京公网安备 11010802034615号
经营许可证编号:京B2-20210330
AT|区块链+大数据融合,是否真能扬长补短
“数据为王”,这一度让BAT等数据巨头的地位盘踞多年而难以被取代。放眼全球,同样对用户免费的Facebook、谷歌更加如此,其在世界范围内掌控海量数据,垄断地位不易撼动。
虽然品牌地位稳固,但是安全问题频发也成为巨头的困扰。正如Facebook,自其成立以来,用户数据隐私泄漏问题接二连三,更重要的是,用户质疑和监管都没法从根本上解决数据隐私泄漏的难题。
在这样的背景下,区块链提出了很多底层技术,去中心化,公开透明,不可篡改...等等让很多致力于解决数据安全及隐私问题的区块链项目也应运而生。
事实上,数据时代的到来,意味着谁控制了数据,就控制了市场生态。谁拥有了数据,也就拥有了行业话语权。但对于无偿提供自己数据的用户来说,即使每一个人都是数据的拥有者,但没有人能掌握自己的数据,这些宝贵的数据一直免费服务于垄断公司。这些公司已经巧妙地使用底层技术协议来构建捕获和控制海量个人数据的专有应用层。在如今的经济中,数据等于金钱。
而区块链技术的出现,让用户数据隐私、安全和数据为个人产生价值成为可能。
通过《区块链与大数据》一书,AT交易所为大家找到了区块链解决几个痛点,就像经济活动的驱动力就是价值实现,作为同样有价值的数据,本身在流动过程中就需要有对等的价值流动。带着数字密码货币基因的区块链,本就是为价值而生,有能力补上大数据价值流转这一短板。
区块链技术凭借不可篡改、可追溯等特性,可以解决数据共享开放与交易交换中的若干关键问题。
区块链技术的去中心化、加密共享、分布式账本技术特性对解决数据流通和价值共享方面提供了解决方案。区块链可以生成一套记录时间先后的、不可篡改的、可信任的数据库,这套数据库是去中心化存储且数据安全能够得到有效保证的。通过这项技术,即使没有中立的第三方机构,互不信任的双方也能实现合作。简而言之,区块链类似一台“创造信任的机器”。
区块链可以提供可追溯路径,能有效破解数据确权难题。在数据流通领域中,数据信息透明度低、数据伪造篡改、数据交易存在非法倒卖等问题一直存在,一旦数据交易触及法律问题,其举证和追责过程都会十分困难。使用区块链技术开发的数据交易溯源平台,可以把每一笔交易信息都放入区块链中存储起来,数据购买者可以得到一个交易凭证,在交易凭证中可以看到该笔交易的数字证书以及该笔交易信息在区块链中的存储地址,待用户需要进行数据确权时可以进入溯源平台,输入交易凭证中的相关信息,查询到存储在区块链中的该笔交易信息,从而完成交易数据的确权。
大数据的交易则可以转变为对数据使用权的交易,数据产生时即以加密的方式被固定在区块链上,买方对数据的购买成为了触发针对特定数据计算的行为,计算的过程会消耗代币,而计算的结果则直接使用买方的公钥加密,由买方持有。
区块链可以明确交易历史和各方贡献,助力数据价值衡量。数据在计算以及结果输出的每一步记录都会被留存在区块链上,不论是对数据源头的质疑,还是针对买方私自复制的追责,都可以通过使用区块链可追溯特性来解决。
区块链可以对数据的使用和流通进行快速、便捷的即付即用。利用智能合约,可能实现更小粒度的数据交易模式,如条目交易、后付款的信用交易、充值交易、授权场景交易、数据交换交易等,从而改变当前大数据交易的商业模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27