
商业分析是概念,也不仅是概念
在厂商、咨询公司、系统集成商、媒体、客户、研究机构等共同营造的BI生态中,利益永远是第一位的,适时地进行“整顿”,对任何行业都是必需的,对基础性的概念也是如此。
SAS认为:BA是建立在BI基础之上的高端分析拓展,与传统BI偏重于业务结果的呈现不同,BA更偏重于业务流程中的分析,借助预测性分析为管理者和员工团队提供具有指导性意义的有效信息,帮助企业更好地完成分析和决策,全面提高企业的绩效。
对于“BA是建立在BI基础之上”,从原理上来讲,大可不必:即使没有BI基础,或者说没有数据仓库,只要有相对完备的数据,就可以进行业务分析。但从实际应用来讲,如果没有海量的数据支撑,没有数据仓库以及其后所隐藏的企业数据管理链条作为支撑,那么任何的分析和研究项目都无法在系统性、全面性和战略性等方面得到保障。
同时,我们也看到,BA与BI还是有比较明显的区隔:BI更偏向水平的技术和业务平台,而BA更偏垂直业务应用(例如面向行业的业务问题)。从这个角度来看,BA更能帮助企业解决实质业务问题,也能更好地发挥BI的商业价值。
针对零售业的商业分析,我们可以从下图中的一些业务主题入手,来帮助企业解决业务问题并提供切实的商业策略。
图1 新华信零售业商业决策解决方案
[page] 同时,针对这些业务主体的分析和研究,甚至建立商业模型,是零售企业的经营决策所必须要逾越的一个阶段;特别是在阴晴不定且瞬息万变的市场上,针对某些特定主题的快速市场响应,是每个希望做大做强的零售企业家都在思索的核心问题。
零售业在商业智能和商业分析中进行抉择
那么,在商业智能和商业分析中,企业(尤其是零售企业)究竟应该如何抉择呢?
首先应该看企业的发展阶段:按照一些人的说法“很多中国企业都在莫名其妙中长大”,这种原始性、自发性和不确定性的成长,势必为系统性、目的性和确定性所代替。对于中型企业来讲,企业或者活在产业链条的某个节点,或者靠新鲜的商业理念得以迅速成长,企业产品和服务的“大规模快速复制”是中型企业成长为大型甚至巨型企业所必经的阶段。在这个阶段,普遍来讲,中型企业更应该解决的问题是业务的规范化和体系化问题,并系统地规划下一步的走向,此时商业智能的水平性特质将会逐步显现,也会在更大程度上契合企业的发展脉络(这也是为什么诸多BI厂商开始推出中小企业普及版的原因之一);同时,中型企业采用商业分析来为企业解决特定的业务问题,也是一个不错的选择,甚至会成为企业今后实现个性化和差异化经营打下良好的基础。对于大型甚至巨型企业而言,往往已经建立了自己的BI体系,而针对某些特定业务主题的分析、建模和预测甚至决策引擎,将会在瞬间为企业带来巨大的绩效提升或者成本削减,大型和巨型企业更多地基于BI体系从事BA的业务,是已然也是必然。
其次应该看重企业的实际业务需求,很多的业务分析和业务模型并不是靠BI或者BA就可以单独解决的:零售业是典型的资金流转型行业,日常经营中的财务分析和企业快速扩张所必需的投融资分析,都具有很强的行业和应用主题特色,例如企业就必须对杜邦分析、沃尔分析或者现金流预测分析乃至投资回报分析等模型进行适应本行业特别是本企业的改造。在这个方面,企业最缺乏的不是BI或BA专家,而是基于行业的应用专家;虽然操作型BI可以部分解决这些问题,但是在实际的分析和研究过程中,需要行业专家、应用专家、数据专家、分析专家和技术专家等一干人等来合力解决这些问题,而不必去刻意去划分BI或者BA(事实上有时也无法划分)。
还有一个要命的问题需要解决:任何的分析项目,都离不开基础数据的支持,万法归宗,皆是数据。对于处于发展阶段的中小零售企业,首先是考虑自身的数据收集和管理能力,或者去系统性地逐步建立这种能力;而对于存在大量数据甚者数据迷雾的零售业企业,数据的高速增长也往往带来数据管理问题的几何级增长。简单地保留POS机数据、进货数据等是基础,而对业务分析至关重要的客户数据、营销数据、消费数据和服务数据中,哪些数据、什么粒度的数据应该通过什么方法进行收集和存储,是企业必须要考虑的问题。企业的数据能力,会决定企业的BI和BA能力;同时,企业的BI和BA需求,也会反过来逼迫企业数据能力的提升。
最后提一点,鉴于小型的BA项目更易操作实施并评估成效,建议某些还站在BI和BA两座山头前逡巡不前的零售业企业,以小型BA项目为契机,评估商业决策为企业带来的价值,同时“拉动内需”,为企业后期的规模化BI或BA实施打下良好的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11