
商务智能项目实施前期工作步骤
商务智能的定义:商务智能是从数据到信息,从信息到知识,再从知识到决策,然后从决策到行动。商务智能分为战略智能和运营智能两大类。战略智能是相对于集团公司如何有效制定、跟踪企业战略的智能分析和决策;而运营智能是相对于公司日常如何有效运营的智能执行和监控。
商务智能按照角色应用设计的流程:公司董事会主动研究出现了什么问题或者寻找下一步的机会,然后交给分析师或者管理层进行诊断、研究和分析,什么原因导致了问题的出现,再通过假设分析,实现投资的分布和回报率,或者下一步活动(比如营销战役)的机会和可行性,寻找最佳方案,定义优先级,选择活动的内容,然后提交给决策者,由决策者通过执行方案,由管理层具体制定活动实施方案,度量标准和监控的方案,发送给相关部门或者外部的合作伙伴(比如供应商)执行,对于执行的结果,通过关键绩效指标,了解执行的进度和问题,再进行方案调节。
商务智能项目实施前期应做的工作步骤:
第一步、选定主题和应用角色:商务智能首先要明确定义一个主题、应用的部门,应该按照角色设计应该。最先选定的主题最好是数据相对完整,数据质量相对较好的主题。企业要做到战略智能到运营智能的战略目标、战术目标和战斗目标的一致性,要保证商务智能是按照角色划分的,不同的角色需要不同的内容和展现形式:
(1)、企业的战略层需要企业绩效管理驾驶舱,确保战略的制定和有效执行的策划,他们时刻要了解公司的关键绩效指标达标现状和存在的问题,对关键绩效指标的预警;
(2)、管理层需要报表、预警、查询和分析,将企业的战略转换为业务部门的战术,时刻监控部门绩效、了解差异、同比环比、解决问题或者提供选择方案;
(3)、分析层需要利用工具对业务进行分析和跟踪,按照高层的指意,对企业的运营提出建议;
(4)、执行层需要了解具体执行的情况,了解自己所完成任务的状况。
第二步、用户需求分析:当主题拟定之后,比如财务分析主题,主要使用部门是财务部门,然后要尽量做到短平快,抓住主题和主要解决的问题,尽快在3个月或者半年实现目标,而不要追求大而全,选择尽量的完美其结果不但使得项目的周期加长,而且还使得项目的重点淡化,主题不突出了。
在部门或者角色应用时,一般会设计到固定报表、关键绩效指标(KPI)指标预警、即席查询、例外分析和数据挖掘(预测、深层次的分析)五个方面的应用展现。但是在项目的初期,最好包括报表、KPI指标、例外分析和即席查询。
(1)、制定KPI指标:这里首先介绍如何制定KPI指标,对于相关部门的不同人员,从部门的所有相关的绩效指标中选出关键绩效指标(KPI),这样的指标最好不超过8个,关键绩效指标应该由其他的指标运算而得到,比如企业的关键绩效指标是成长性、安全性、流动性、生产性和收益性,而关键绩效指标收益性由销售利润率、资金利润率和流动资金利润率组成。对于选定的KPI,需要设计门槛值,当超出门槛值时,可以自动用红绿灯仪表盘发出预警,或者发短信告诉相关管理者,管理着可以通过移动商务智能来跟踪指标和查询发生的原因。
(2)、设计固定报表:对于固定报表,特别是常用的报表,最好事先预制计算保存,比如晚上12点到早晨7点之前自动计算保存。对不同角色有不通需要的固定报表,将用户最常用的报表列在最容易获得的位置。
(3)、查询接口:对于需要查询的指标或者问题,一定需要工具或者设计的各个可选下拉菜单模式进行查询。
(4)、例外分析:可以对给定的指标,通过红绿灯、仪表盘、温度计、KPI指标超门槛值进行预警,然后可以进行例外钻去和分析。
(5)、数据挖掘:数据挖掘应该适合于分析师和一些专家或者高级应用者。
第三步、数据模型设计:有了用户需求,下一步就需要设计相应数据集市的数据模型以及采取的技术方案,利用“想大做小”的原则,对于本次要实现的KPI和报表,考虑其计算的方法和定义,考虑相关指标的基础数据源,是否所有的数据都存在,数据的完整性、准确性、唯一性,对于缺少的数据如何获取,需要多大的成本。接下来要考虑如何利用ETL工具,数据质量控制工具以及元数据管理工具,来确保可以按时、按预算实现设计的目标吗?当然角色不同,数据的颗粒度也就不同,级别越高,数据的颗粒度就越大,战略层最好是统计汇总数据,但是他们要看到的面更广。
第四步、用户界面的设计:有了相关的指标和应用,就要确定各个角色用户界面的设计,对于战略层他们喜欢仪表盘、红绿灯的指标预警、电子地图、雷达图、杜邦分析法、趋势和走向结果展现;而管理层需要部门指标预警、固定报表、例外分析和假设分析,最好利用趋势图、即席查询、电子地图和OLAP分析,对于执行层面最好是一些固定的运营报表、和详细运营报表查询、与自己工作相关的例外分析。将这些界面以及二级、三级界面和用户进行沟通,听取意见,确定界面。界面需要具有逻辑性,点击最好不要超过三键。
准确获得高层的需求:对于商务智能需求的调研,特别是对高层决策者的调研,一定选一个有过高层管理经验,在业界有一定名望,而且决策层也非常认可的专家进行调研,事先将调研提纲发给调研人员,调研时要做到尽量多问少说,了解老总的真正想法,关心那些问题,那些指标等,最好带上录音笔,将老总关心的问题记录下来,等老总讲完了,再抛砖引玉将其他的行业或者类似的企业是如何做的展现给老总,然后问老总是否也对其他相关的应用感兴趣。这样就可以尽量减少以后的修改。为什么要让大家认可的专家调研决策层?主要是其他开发人员一般缺少管理经验,所以调研的问题和老板的想法不一定对口,或者无法了解老总的意图和想法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27