
认为你的公司需要数据科学家?你可能错了
当我在15年前开始从事数据工作时,我从未想过近年来数据科学家会如此备受追捧。如今,数据科学家被认为是全球最热门的职位之一,市场上对数据科学家的需求供不应求。
创业公司在产品生命周期的早期招聘数据科学家的情况并不罕见。其实很多情况下,他们并不需要数据科学家。
作为一名数据科学方面的倡导者,为什么我会这么认为呢?
首先,我想声明的是雇用数据科学家确实有很多好处。如果使用得当,数据科学家将成为强大的商业武器。我想强调的是,数据科学当中涉及到大量的数据相关操作和技巧,这不是在短期培训中就能掌握的。
因此,当企业需要聘请数据科学家时,需要慎重考虑应该何时聘请哪种数据科学家。
当企业打算聘请数据科学家之前,可以先试着问自己以下四个问题:
1. 有多少数据?
如果你是一家尚未启动的创业公司,那么你们可能并不需要全职数据科学家。其实,如果你的公司已经发展的较为成熟,但只有小规模的客户、产品或会员基础,那么你也不需要数据科学家。
为什么呢?显然数据科学家需要数据。不是任何数据都可以。许多技术需要至少数万个、甚至数百万个数据点才能构建。
如今,深度学习备受关注。在针对数据科学家的工作描述中充满了神经网络、计算机视觉和自然语言处理等术语。而这类技术依赖于大量的训练数据。谷歌翻译就是建立在超过1.5亿个词汇基础上的神经网络。成功部署这型模型所需的数据量超过了许多公司加起来的数据总量。
很多技术比深度学习使用更少的数据,但是当中仍然需要相当大的样本,还需要能够判断何时使用哪种方法的知识储备。目前需要大量的投入才能创建数据科学所需要的环境,拥有资金和昂贵的资源是远远不够的。
2. 是否有已制定的关键绩效指标(KPI)和商业智能报表?
如果没有对企业驱动因素的基本了解,那么将难以利用先进技术。
数据科学家能够通过机器学习进行预测,例如哪些用户会流失、哪些用户很活跃。但是如果缺乏对流失和高度活跃的定义,那么在构建预测模型之前会遇到问题。
此外,如果没有足够的指标进行评估,那么将很难验证模型。A/B测试等其他技术需要总体评估标准(OEC),这通常是业务驱动的KPI。
3. 数据科学家要做什么?
这是四个问题中最主观和最有趣的问题,“你想让数据科学家做什么?”我得到的最常见的答案是:“我们不知道,这也是为什么我们需要雇用一位。”
在这种情况下,我会告诉该企业这是行不通的。虽然聘请数据科学家时,你并不需要成为该方面的专家,但是你应该清楚哪些是可行的、哪些是不可行的,从而不会设定不切实际的期望。
数据科学不是魔术,但也不是传统科学。数据科学是一门艺术,也是一门科学,这意味着当中技术和能力的可变性很大。企业可以考虑让现有团队的成员发展成数据科学家。对现有分析师来说,进入数据科学领域的方式之一是对现有的KPI进行预测。一方面,他们有机会学习熟悉的数据; 另一方面,对现有员工进行投资意味着将来市场招聘的需求减少。
4. 数据科学家有哪些内部支持?
如果数据科学家在你的企业没有适当的支持,那么请不要为招募他们而投资。近年来,数据科学课程数量激增,然而许多毕业生并没有准备好解决业务问题。绝大多数课程都让学生解决预先清洁好的数据。在现实世界中,干净的数据并不存在。
在没有高级数据科学家指导的前提下,聘请初级数据科学家并不明智,初级数据科学家会遇到难题,而且往往会导致错误的分析。初级的数据科学家团队难以将业务问题转化为技术问题,而错误的分析会导致任务难以完成。
聘请高级数据科学家并不能完全缓解这个问题,部分原因在于很难证明雇佣人员的水平和资历。如果你很幸运地聘请到优秀的人员,他仍然需要来自领导团队的大量支持。比如,创建从未使用过的模型;或者进行A/B测试但结果被忽略。更糟的是,分析问题所需的数据并没有被收集。
通常,必要的第一步是强大的数据收集程序,这需要由工程师或数据库管理员提供,而不是数据科学家。在很多企业中,高级数据科学家需要花大量时间完成数据需求和团队部署,而这很容易导致高级数据科学家的流失。
结语
招聘和留住优秀的数据科学家的成本是很昂贵的。但如果能明确何时聘用、如何聘用、聘用哪种人才,则能够有效地减少成本。
不要陷入招聘广告的陷阱,那些只是对工作技能的简单罗列。不要奢望数据科学家会魔法。一定要明确自身的真实需求,如果可能的话,在进行招聘之前咨询专业人员。企业数据方面的成功取决于以上这几点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27