京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言解析JSON格式数据文件
由于分析的数据格式为JSON格式,既占空间,而且分析时也非常的不方便,所以,我们需要对JSON格式
的数据进行解析,使其符合R语言分析所需要的数据格式,如data.frame,list等。
在R语言的包库中,已经有人对JSON格式的解析做了完整的包jsonlite,这极大地减轻了分析人员的工作压力。
jsonlite包中有以下几个函数
1、flatten
其中flatten函数是用来处理JSON中含有内嵌表格的情况,这种JSON文件解析为data.frame时,会在data.frame中
的某一列或多个列中另外包含一个data.frame。flatten函数可以将这种data.frame转换为一个2维的列表结构。通俗
点讲,就是讲内嵌表格的属性作为外置大表格的属性,组成一个维数变大了的表格。例如
上图的x表格,stats为一个内嵌表格,具有3个属性。
经过flatten(x)函数转化后,变为一个表格
2、prettify,minify
prettify是一个美化函数,对json密集的json格式,通过增加空白,对格式进行标准化,这样我们在观察json数据时会比较方便。
例如:
minify是一个压缩函数,与prettify做的事情正好相反,其效果如下
这两个函数使用都非常简单,仅需要一个JSON对象即可,可以从toJSON函数获得
3、rbind.pages
这是一个合并函数,根据官方文档的说法,它可以将多个data.frame合并为1个data.frame。
这个函数非常只能,可以自动识别多个data.frame的属性是否相同,若相同,则按行合并,若不同,则将相同的地方按行合并,不同的属性按列合并
例如:
x <- data.frame(foo = rnorm(3), bar = c(TRUE, FALSE, TRUE))
y <- data.frame(foo = rnorm(2), bar = c("blue", "red"))
rbind.pages(list(x, y))
直接按行合并了。
x <- data.frame(foo = rnorm(3), bar = c(TRUE, FALSE, TRUE))
y <- data.frame(foo = rnorm(2), col = c("blue", "red"))
rbind.pages(list(x, y))
对foo按行合并了,而col属性是按照列合并的,没有的部分用NA代替。
4、serializeJSON
将一个R的对象序列化为一个JSON数据集。
5、stream_in,stream_out
利用流文件来处理JSON格式的数据解析任务。这种方法可以针对数据量非常大的情况。
stream_in(con, handler, pagesize = 500, verbose = TRUE, ...)
其中con为一个连接对象,可以是一个网络ur,也可以是一个文件路径
handler是一个自定义函数,pagesize用来指定我们从文件中要读取的文件行数。
verbose=T,设置是否打印出处理行数
stream_out(x, con = stdout(), pagesize = 500, verbose = TRUE, ...)
x为一个需要输出为json数据集的对象,目前只支持data.frame
5、toJSON,fromJSON
与stream_in和stream_out的功能类似,toJSON是转化为JSON格式,fromJSON是将JSON格式数据集转化为
R中的格式,一般为list.
具体使用方法可以查帮助文档。
其中fromJSON在读取多行JSON数据时会报错,只能单行读取数据。
总结
进行JSON格式数据解析时,没有特殊要求,建议使用stream_in函数。如果希望按照自己的想法来解析,可以使用fromJSON
按行解析,然后对字符串按照自己的想法处理,如加密,解密等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06