京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言解析JSON格式数据文件
由于分析的数据格式为JSON格式,既占空间,而且分析时也非常的不方便,所以,我们需要对JSON格式
的数据进行解析,使其符合R语言分析所需要的数据格式,如data.frame,list等。
在R语言的包库中,已经有人对JSON格式的解析做了完整的包jsonlite,这极大地减轻了分析人员的工作压力。
jsonlite包中有以下几个函数
1、flatten
其中flatten函数是用来处理JSON中含有内嵌表格的情况,这种JSON文件解析为data.frame时,会在data.frame中
的某一列或多个列中另外包含一个data.frame。flatten函数可以将这种data.frame转换为一个2维的列表结构。通俗
点讲,就是讲内嵌表格的属性作为外置大表格的属性,组成一个维数变大了的表格。例如
上图的x表格,stats为一个内嵌表格,具有3个属性。
经过flatten(x)函数转化后,变为一个表格
2、prettify,minify
prettify是一个美化函数,对json密集的json格式,通过增加空白,对格式进行标准化,这样我们在观察json数据时会比较方便。
例如:
minify是一个压缩函数,与prettify做的事情正好相反,其效果如下
这两个函数使用都非常简单,仅需要一个JSON对象即可,可以从toJSON函数获得
3、rbind.pages
这是一个合并函数,根据官方文档的说法,它可以将多个data.frame合并为1个data.frame。
这个函数非常只能,可以自动识别多个data.frame的属性是否相同,若相同,则按行合并,若不同,则将相同的地方按行合并,不同的属性按列合并
例如:
x <- data.frame(foo = rnorm(3), bar = c(TRUE, FALSE, TRUE))
y <- data.frame(foo = rnorm(2), bar = c("blue", "red"))
rbind.pages(list(x, y))
直接按行合并了。
x <- data.frame(foo = rnorm(3), bar = c(TRUE, FALSE, TRUE))
y <- data.frame(foo = rnorm(2), col = c("blue", "red"))
rbind.pages(list(x, y))
对foo按行合并了,而col属性是按照列合并的,没有的部分用NA代替。
4、serializeJSON
将一个R的对象序列化为一个JSON数据集。
5、stream_in,stream_out
利用流文件来处理JSON格式的数据解析任务。这种方法可以针对数据量非常大的情况。
stream_in(con, handler, pagesize = 500, verbose = TRUE, ...)
其中con为一个连接对象,可以是一个网络ur,也可以是一个文件路径
handler是一个自定义函数,pagesize用来指定我们从文件中要读取的文件行数。
verbose=T,设置是否打印出处理行数
stream_out(x, con = stdout(), pagesize = 500, verbose = TRUE, ...)
x为一个需要输出为json数据集的对象,目前只支持data.frame
5、toJSON,fromJSON
与stream_in和stream_out的功能类似,toJSON是转化为JSON格式,fromJSON是将JSON格式数据集转化为
R中的格式,一般为list.
具体使用方法可以查帮助文档。
其中fromJSON在读取多行JSON数据时会报错,只能单行读取数据。
总结
进行JSON格式数据解析时,没有特殊要求,建议使用stream_in函数。如果希望按照自己的想法来解析,可以使用fromJSON
按行解析,然后对字符串按照自己的想法处理,如加密,解密等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31