
R语言评测回归模型的性能
通过计算预测值和实际值之间的差值大小可以评估回归模型预测性能的优劣,常用的误差评测标准包括均方根误差(root mean square error,RMSE),相对平方差(Relative Square Error,RSE)以及可决系数(R-Square).
操作
建立一个回归模型
library(car)
data(Quartet)
plot(Quartet$x,Quartet$y3)
lmfit = lm(Quartet$y3~Quartet$x)
abline(lmfit,col= "red")
线性回归结果示意
调用predict函数得到预测结果
predicted = predict(lmfit,newdata = Quartet[c("x")])
计算两者之间的均方根误差:
actual = Quartet$y3
> rmse = (mean((predicted - actual)^2))^0.5
> rmse
[1] 1.118286
计算相对平方误差:
mu = mean(actual)
rse = mean((predicted - actual)^2)/mean((mu-actual)^2)
rse
[1] 0.333676
计算模型的R-Square
rsquare = 1- rse
rsquare
[1] 0.666324
采用MASS算法包的rlm函数重新计算属性y3的值,并调用plot绘制结果
调用predict函数求预测结果
predicted = predict(rlmfit,newdata = Quartet[c("x")])
计算预测值与实际之间的均方根误差
actual = Quartet$y3
rmse = (mean((predicted - actual)^2))^0.5
rmse
[1] 1.279045
计算两者之间的相对平方误差
mu = mean(actual)
rse = mean((predicted - actual)^2)/mean((mu-actual)^2)
rse
[1] 0.4365067
计算模型的R-Square值:
rsquare = 1- rse
> rsquare
[1] 0.5634933
说明
回归模型的评测可以通过计算预测值和实际间的差值完成,我们经常使用均方根误差,相对平方误差,以及R^2值作为三种常用的回归模型误差评估标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15