京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python通过future处理并发问题
future初识
通过下面脚本来对future进行一个初步了解:
例子1:普通通过循环的方式
import os
import time
import sys
import requests
POP20_CC = (
"CN IN US ID BR PK NG BD RU JP MX PH VN ET EG DE IR TR CD FR"
).split()
BASE_URL = 'http://flupy.org/data/flags'
DEST_DIR = 'downloads/'
def save_flag(img,filename):
path = os.path.join(DEST_DIR,filename)
with open(path,'wb') as fp:
fp.write(img)
def get_flag(cc):
url = "{}/{cc}/{cc}.gif".format(BASE_URL,cc=cc.lower())
resp = requests.get(url)
return resp.content
def show(text):
print(text,end=" ")
sys.stdout.flush()
def download_many(cc_list):
for cc in sorted(cc_list):
image = get_flag(cc)
show(cc)
save_flag(image,cc.lower()+".gif")
return len(cc_list)
def main(download_many):
t0 = time.time()
count = download_many(POP20_CC)
elapsed = time.time()-t0
msg = "\n{} flags downloaded in {:.2f}s"
print(msg.format(count,elapsed))
if __name__ == '__main__':
main(download_many)
例子2:通过future方式实现,这里对上面的部分代码进行了复用
from concurrent import futures
from flags import save_flag, get_flag, show, main
MAX_WORKERS = 20
def download_one(cc):
image = get_flag(cc)
show(cc)
save_flag(image, cc.lower()+".gif")
return cc
def download_many(cc_list):
workers = min(MAX_WORKERS,len(cc_list))
with futures.ThreadPoolExecutor(workers) as executor:
res = executor.map(download_one, sorted(cc_list))
return len(list(res))
if __name__ == '__main__':
main(download_many)
分别运行三次,两者的平均速度:13.67和1.59s,可以看到差别还是非常大的。
future
future是concurrent.futures模块和asyncio模块的重要组件
从python3.4开始标准库中有两个名为Future的类:concurrent.futures.Future和asyncio.Future
这两个类的作用相同:两个Future类的实例都表示可能完成或者尚未完成的延迟计算。与Twisted中的Deferred类、Tornado框架中的Future类的功能类似
注意:通常情况下自己不应该创建future,而是由并发框架(concurrent.futures或asyncio)实例化
原因:future表示终将发生的事情,而确定某件事情会发生的唯一方式是执行的时间已经安排好,因此只有把某件事情交给concurrent.futures.Executor子类处理时,才会创建concurrent.futures.Future实例。
如:Executor.submit()方法的参数是一个可调用的对象,调用这个方法后会为传入的可调用对象排定时间,并返回一个
future
客户端代码不能应该改变future的状态,并发框架在future表示的延迟计算结束后会改变期物的状态,我们无法控制计算何时结束。
这两种future都有.done()方法,这个方法不阻塞,返回值是布尔值,指明future链接的可调用对象是否已经执行。客户端代码通常不会询问future是否运行结束,而是会等待通知。因此两个Future类都有.add_done_callback()方法,这个方法只有一个参数,类型是可调用的对象,future运行结束后会调用指定的可调用对象。
.result()方法是在两个Future类中的作用相同:返回可调用对象的结果,或者重新抛出执行可调用的对象时抛出的异常。但是如果future没有运行结束,result方法在两个Futrue类中的行为差别非常大。
对concurrent.futures.Future实例来说,调用.result()方法会阻塞调用方所在的线程,直到有结果可返回,此时,result方法可以接收可选的timeout参数,如果在指定的时间内future没有运行完毕,会抛出TimeoutError异常。
而asyncio.Future.result方法不支持设定超时时间,在获取future结果最好使用yield from结构,但是concurrent.futures.Future不能这样做
不管是asyncio还是concurrent.futures.Future都会有几个函数是返回future,其他函数则是使用future,在最开始的例子中我们使用的Executor.map就是在使用future,返回值是一个迭代器,迭代器的__next__方法调用各个future的result方法,因此我们得到的是各个futrue的结果,而不是future本身
关于future.as_completed函数的使用,这里我们用了两个循环,一个用于创建并排定future,另外一个用于获取future的结果
结果如下:
注意:Python代码是无法控制GIL,标准库中所有执行阻塞型IO操作的函数,在等待操作系统返回结果时都会释放GIL.运行其他线程执行,也正是因为这样,Python线程可以在IO密集型应用中发挥作用
以上都是concurrent.futures启动线程,下面通过它启动进程
concurrent.futures启动进程
concurrent.futures中的ProcessPoolExecutor类把工作分配给多个Python进程处理,因此,如果需要做CPU密集型处理,使用这个模块能绕开GIL,利用所有的CPU核心。
其原理是一个ProcessPoolExecutor创建了N个独立的Python解释器,N是系统上面可用的CPU核数。
使用方法和ThreadPoolExecutor方法一样
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31