
不知道 AI 这三点优势,你可能真的要被淘汰
我们正处于飞速发展的数字化转型时期,这是由巨大的市场转变驱动的——即人工智能和机器学习。
同时,随着AI 和机器学习技术的普及,从中获益的不仅仅是大型企业。如今每个人都能利用AI和机器学习更高效地完成工作。
将 AI 用于工作场所
AI 给商业领域带来了深刻的改变,而且没有放缓的迹象。根据Adobe的研究“ 未来工作:不仅仅是机器 ”,美国超过四分之一的上班族认为,科技能让他们从无聊的任务中解放出来。
对人工智能的需求是显著的。有72%的上班族表示,他们对基于软件的智能个人助理感兴趣。同时就目前来说,他们更喜欢让AI帮助完成待办事项和预约提醒等简单任务,而不是复杂的任务。
在我看来,人工智能和机器学习的影响远不止如此。越来越多的组织机构用AI来处理尖端应用,当中AI至少有三个好处:降低成本;提高效率;推动重大突破。对于机构企业来说,这几点十分关键。同时这也在推动人工智能和机器学习的飞速发展。
1. 降低成本
我们可以把自动化视为完成重复性任务的利器。在商业初期,完成工作的唯一途径是通过人力。之后,机器开始将一些工作自动化。如今,机器学习能够将越来越多的脑力劳动自动化,让人们把宝贵的时间和才能应用于商业的其他领域。
如果任务能够分解为若干个子任务,并且这些子任务能够用更短的时间完成,那么在不久的将来这些任务就能用自动化完成。查看监控录像,检查医疗图像,识别图像中的特定内容,通过自动化!阅读文档,并在文档中查找相同的信息,通过自动化!
更多的让人从繁琐的任务中解放出来,我们就可以更多地激发人们的潜力,同时降低总体支出。如果自动化是现实的选择,那么企业领导者绝对应该接受它。
2. 提高效率
对于员工来说,高效率是十分重要的。有了效率的提高,你能够轻易做到事半功倍。
比如最普遍的AI用例:语音识别。如Siri和Alexa。近一半的美国人称,他们都有使用某种形式的语音识别,并且这些技术正在运用到工作中。Brooks Brothers、Mitsui USA、WeWork、Vonage和Capital One这几家公司已经开始在商业中使用Alexa。DXC.technology表示,一位专家设想,“将来办公室语音助手将在会议中使用语音生物认证,识别发言人身份,并进行会议录音和翻译。”
在许多商业用例中,这种语音助手并不会取代任何人的工作,只是为现有的工作增加价值并提高效率。
3. 推动重大突破
人工智能和机器学习能够帮助人们克服发展中盲点,从而推动重大突破。
在医学领域,这意味着能够分析患者风险,或将新的诊断产品推入市场。在制造业,这意味着能够在发生前对风险进行预测。
在商业领域,这意味着通过AI和机器学习,能够更深入的解读公司文件,并从中发现模式和趋势。
事实上,类似Adobe Document Cloud(包括Adobe Acrobat DC、Adobe Sign、Adobe Scan)的一些解决方案已经能使用语义分析技术,对单词、段落和列表进行分类,从而让人们更轻松、更快速地搜索相关内容。
突破意味着看到人们之前无法做到的事情,AI无疑能极大地推动突破创新。
下一步是什么
对于员工和企业而言,未来机器预计能够解放大量的劳动力。从而,我们能够把精力集中到只有人类才能执行的任务,以及企业想要执行的任务,从而推动行业的发展。
下一个问题是:你应该如何利用AI和机器学习的力量为企业助力?
很简单,先从数据开始。成功的AI和机器学习需要依赖于数据驱动的策略,如果没有足够的可操作数据就没有机器学习。许多领导者希望着手开展机器学习项目,却发现数据并不像预期中那样易于获取、易于理解和可用。
最终只有能获取数据的企业才能成为赢家。这些企业能够捕获实时数据并采取行动。凭借得到的分析见解和智慧,企业能够使用AI和机器学习扩大业务影响力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01