京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R软件做分类树和回归树(CART)
决策树(Decision Tree)又称为判定树,是运用于分类的一种树结构。其中的每个内部结点(internal node)代表对某个属性的一次测试,每条边代表一个测试结果,叶结点(leaf)代表某个类(class)或者类的分布(class distribution),最上面的结点是根结点。决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。
构造决策树是采用自上而下的递归构造方法。以多叉树为例,如果一个训练数据集中的数据有几种属性值,则按照属性的各种取值把这个训练数据集再划分为对应的几个子集(分支),然后再依次递归处理各个子集。反之,则作为叶结点。
决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据。二叉树的内部结点(非叶结点)一般表示为一个逻辑判断,如形式为(a = b)的逻辑判断,其中a 是属性,b是该属性的某个属性值;树的边是逻辑判断的分支结果。多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。树的叶结点都是类别标记。
使用决策树进行分类分为两步:
第1步:利用训练集建立并精化一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程。
第2步:利用生成完毕的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。
问题的关键是建立一棵决策树。这个过程通常分为两个阶段:
第一阶段,建树(Tree Building):决策树建树算法见下,这是一个递归的过程,最终将得到一棵树。
第二阶段,剪枝(Tree Pruning):剪枝的目的是降低由于训练集存在噪声而产生的起伏。
分类树和回归树(CART:Classification and Regression)
描述给定预测变量X后,变量Y条件分布的一种方法,使用二叉树将预测空间递归地划分为若干个子集,Y在这些子集上的分布是连续均匀的,树中的叶节点对应着划分的不同区域,划分是由与每个内部节点相关的分支规则(Splitting rules)确定的.通过从树的根节点逐渐到叶节点移动,每个预测样本被赋予一个叶节点,Y在该节点上的分布也被确定。利用CART进行预测同样需要一个学习样本(训练样本)对CART进行建树和评估,然后利用其进行预测。以下面的数据结构为例:
其中,
为属性变量,可以是连续或离散的;
为类别变量,当
为离散时该模型为分类树,当
为有序变量时,模型为回归树。
根据给定的训练样本
进行建模的步骤主要有:
构建树
,使得
中每个叶节点要么很小(节点内所含样本数小于给定的值
),要么是纯节点(节点内部样本的
属性一样),要么只有唯一属性变量作为分支选择。
CART的原理或细节,相关数据挖掘或机器学习书籍都有阐述,另外,百度了相关博客,个人感觉RaySaint的博客把握了CART的关键因素。详见:
http://underthehood.blog.51cto.com/2531780/564685
R软件完成CART
#1调用rpart包进行CART建模
library(rpart)
#1前列腺癌数据stagec
head(stagec)
progstat = factor(stagec$pgstat, levels = 0:1, labels = c("No", "Prog"))
#2建树,method主要有 "anova", "poisson", "class" "exp"。通常作生存分析选exp,因变量是因子变量选class,作poisson回归选poisson,其他情况通常选择anova;
cfit = rpart(progstat ~ age + eet + g2 + grade + gleason + ploidy,data = stagec, method ='class')
#输出结果
print(cfit)
#作树图
par(mar = rep(0.1, 4))
plot(cfit)
#添加标签
text(cfit)
#对分类结果作混淆矩阵
(temp = with(stagec, table(cut(grade, c(0, 2.5, 4)),
cut(gleason, c(2, 5.5, 10)),exclude = NULL)))
#3剪枝
cfit2=prune(cfit,cp=.02)
plot(cfit2)
text(cfit2)
printcp(cfit2)#输出剪枝表格
summary(cfit2)#输出CART完整细节,包括printcp内容
#4rpart中相关参数,rpart(,..,parms=())
"Anova"分类没有参数
"Poisson"分类只有单一参数:率的先验分布的变异系数,默认为1
"Exp"分类参数同poisson
"Class"分类包含的参数最为复杂,包括先验概率、损失矩阵或分类指标(Gini或Information)。#4.1比较Gini和Information分类指标,以自带汽车消费数据为例cu.summary
head(cu.summary)#查阅数据
fit1 = rpart(Reliability ~ Price + Country + Mileage + Type, data = cu.summary, parms = list(split = 'gini'))
fit2 = rpart(Reliability ~ Price + Country + Mileage + Type,data = cu.summary, parms = list(split = 'information'))
par(mfrow = c(1,2), mar = rep(0.1, 4))
plot(fit1, margin = 0.05); text(fit1, use.n = TRUE, cex = 0.8)
plot(fit2, margin = 0.05); text(fit2, use.n = TRUE, cex = 0.8)
#4.2比较parms中的先验概率(prior)和损失矩阵(loss)参数,以rpart自带驼背数据kyphosis为例
#查阅数据
head(kyphosis)
#默认的先验概率为Kyphosis两类的频率比fit1 = rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)#定义先验概率prior=c(..,..)fit2 = rpart(Kyphosis ~ Age + Number + Start, data = kyphosis, parms = list(prior = c(0.65, 0.35)))
##loss参数设置,首先一个损失矩阵lmat
lmat = matrix(c(0,3, 4,0), nrow = 2, ncol = 2, byrow = FALSE)fit3 = rpart(Kyphosis ~ Age + Number + Start, data = kyphosis,parms = list(loss = lmat))par(mfrow = c(1, 3), mar = rep(0.1, 4))plot(fit1); text(fit1, use.n = TRUE, all = TRUE, cex = 0.8)plot(fit2); text(fit2, use.n = TRUE, all = TRUE, cex = 0.8)plot(fit3); text(fit3, use.n = TRUE, all = TRUE, cex = 0.8)
二、回归树
1.通常默认anova用来作回归树,以汽车消费数据car90为例,该数据包括34个变量110条观察值。
#查阅car90数据
head(car90);str(car90)
#剔除轮胎尺寸、型号等3个因素型变量(factor variable):"Rim", "Tires", "Model2"
cars = car90[, -match(c("Rim", "Tires", "Model2"), names(car90))]#建立回归树模型carfit = rpart(Price/1000 ~ ., data=cars)carfit;printcp(carfit);summary(carfit,cp=0.1)plot(carfit);text(carfit)
#图示不同分类的误差,par(mfrow=c(1,2)); rsq.rpart(carfit)
2.Poisson回归树
以数据solder为例
#查看数据,变量属性
head(solder);str(solder)
#建立poisson回归树
sfit = rpart(skips ~ Opening + Solder + Mask + PadType + Panel,data = solder, method = 'poisson',control = rpart.control(cp = 0.05, maxcompete = 2))sfit;printcp(sfit);summary(sfit,cp=.1)
3.生存模型回归树
#以前列腺癌数据stagec为例,调用survival包进行生存分析
library(survival)temp = coxph(Surv(pgtime, pgstat) ~ 1, stagec)newtime = predict(temp, type = 'expected')
pfit <- rpart(Surv(pgtime, pgstat) ~ age + eet + g2 + grade +gleason + ploidy, data = stagec)
pfit2 <- prune(pfit, cp = 0.016)#进行减枝
par(mar = rep(0.2, 4))
plot(pfit2, uniform = TRUE, branch = 0.4, compress = TRUE)
text(pfit2, use.n = TRUE)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28