
大数据时代,供应链管理将面临深刻变革
供应链是一个系统,是由很多的公司或者实体、人和各类资源组成的有机系统。这个系统的目的是以可接受的成本将产品或服务提供给终端客户——这是供应链的基本定义。
在供应链管理中有三个要点:第一是物流,第二是信息流,第三是资金流。其中,物流是生产原料或产品在公司之间的传递以及在公司内部的转换。在优秀企业的供应链管理中,物流、信息流和现金流一定是协同整合在一起的。
供应链管理核心思想有两点——
首先,供应链中通常会有很多企业参与产品和服务的供给,因此企业之间的协同与合作非常重要。第二,供应链是跨学科跨部门的。从福布斯公布的经济数据上可以得知,世界前一百最大的经济实体中,51个是公司,49个是国家。这些“富可敌国”的企业有一个共同的特征,其所在的供应链网络中时刻发生着物流、信息流和资金流的密切交互,决定了供应链管理对于跨部门以及跨地区协同的要求远高于其他商业职能领域。
由此可见,整个供应链管理变得更加重要,跨地域之间的协同不仅是公司之间的协同,还有不同地域之间和不同文化之间的协同。另一方面,这些百强公司所属的行业几乎都是制造业,也就是说目前整个世界的经济很大程度上依赖实体经济增长。
企业要管理好供应链,最重要的是要了解如何运作。在福布斯的一项名为“通往财富500强CEO路径”的调查数据显示,500强企业中的CEO50%以上是从COO职位上晋升的,这主要是因为COO的职责是保证企业价值创造流程的效率和效果,这使得该岗位上的高管对于供应链全过程有清晰的认知。
供应链管理具有复杂性特征
供应链管理的首要职能是采购管理。如今大多数公司都把采购提高到战略层面,因此许多公司的供应商不但来自全球多个国家,而且数量巨大。例如,波音是美国公司,但是飞机零部件来自全球供应商企业,而沃尔玛仅在美国就有6000多个供应商。公司需要实时监测供应商是不是能够按照计划生产,以及是不是有健康的资金流和物流信息流,这是非常大的工作量。
在信息网络发达的今天,公司除了直接的物流和现金流的管理之外,还要考虑其他的许多因素,如果知名企业的供应商犯了什么错误,那么它会直接影响到该企业的市场收益。因此,企业需要实时掌握供应商的状态。管理好采购成为企业是否盈利的最关键因素之一。
第二个职能是物流管理。在企业层面,什么样的产品选择什么样的形式运输非常重要。在具体物品运输时,通常的做法是第三方物流介入。而这个过程中,大量的实时信息对决策产生影响。比如,共享单车公司需要决策怎么调配单车才能够保证最大化地给用户提供方便;再如,亚马逊的很多仓库都是自动化的,能够很快地追踪到每一个客户需要的产品,然后把这个产品贴上正确的标签、按正确的地址运送给这个客户。还有一个层面的物流是从公司到客户的物流,从公司到个人的物流管理实际上是很多企业成败的关键。
此外,关于生产制造的决策还包括资源管理、人员管理和质量控制。生产企业很重要的因素是生产量,因为产量越大的话,单位的生产成本就越低,如果产品多样化程度比较高的话,会降低生产效果。现在生产技术的创新使得能够达到生产多样化,从供应链的角度来讲,它带来的是个性化的供应链,也就是说,供应链的组织形式可能对每一个个体客户来说都是不一样的,这是供应链管理的一个大趋势。
最后一个职能是需求预测和计划。所有公司在资源和运作上的计划都是随着需求预测来做的,从公司的角度来讲,如何做好需求预测管理是一个永远的难题。作为供应链管理层面,第一就是决定什么样的产品和服务提供给什么样的客户,第二个很重要的因素是价格,因为需求走势和产品价格有关系的,而市场对于货物价格的反应是供应链管理核心的问题。
工业4.0到来促使供应链管理求变
在大数据时代,工业4.0的到来对供应链管理产生深远影响。首先,公司市场需求预测不再是基于历史销售数据了,大数据会帮助厂商作出智能预测。其次,个性化的服务成为可能,使得市场需求预测从综合预测向个体预测转变,为企业提供更精准的产品级预测指导。同时,大数据对生产领域产生的影响将导致供应链的物流、信息流和资金流的管理方式发生改变,机器设备、人员以及产品之间的信息交互将带来生产方式的深刻变革。机器由于数据的汇集与分析,智能化程度进一步提升,比如自我规划、自我维护的设备逐渐应用于生产,传感器触发的调度适配也有可能实现。这些因素都将引起供应链管理的改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29