
大数据时代,供应链管理将面临深刻变革
供应链是一个系统,是由很多的公司或者实体、人和各类资源组成的有机系统。这个系统的目的是以可接受的成本将产品或服务提供给终端客户——这是供应链的基本定义。
在供应链管理中有三个要点:第一是物流,第二是信息流,第三是资金流。其中,物流是生产原料或产品在公司之间的传递以及在公司内部的转换。在优秀企业的供应链管理中,物流、信息流和现金流一定是协同整合在一起的。
供应链管理核心思想有两点——
首先,供应链中通常会有很多企业参与产品和服务的供给,因此企业之间的协同与合作非常重要。第二,供应链是跨学科跨部门的。从福布斯公布的经济数据上可以得知,世界前一百最大的经济实体中,51个是公司,49个是国家。这些“富可敌国”的企业有一个共同的特征,其所在的供应链网络中时刻发生着物流、信息流和资金流的密切交互,决定了供应链管理对于跨部门以及跨地区协同的要求远高于其他商业职能领域。
由此可见,整个供应链管理变得更加重要,跨地域之间的协同不仅是公司之间的协同,还有不同地域之间和不同文化之间的协同。另一方面,这些百强公司所属的行业几乎都是制造业,也就是说目前整个世界的经济很大程度上依赖实体经济增长。
企业要管理好供应链,最重要的是要了解如何运作。在福布斯的一项名为“通往财富500强CEO路径”的调查数据显示,500强企业中的CEO50%以上是从COO职位上晋升的,这主要是因为COO的职责是保证企业价值创造流程的效率和效果,这使得该岗位上的高管对于供应链全过程有清晰的认知。
供应链管理具有复杂性特征
供应链管理的首要职能是采购管理。如今大多数公司都把采购提高到战略层面,因此许多公司的供应商不但来自全球多个国家,而且数量巨大。例如,波音是美国公司,但是飞机零部件来自全球供应商企业,而沃尔玛仅在美国就有6000多个供应商。公司需要实时监测供应商是不是能够按照计划生产,以及是不是有健康的资金流和物流信息流,这是非常大的工作量。
在信息网络发达的今天,公司除了直接的物流和现金流的管理之外,还要考虑其他的许多因素,如果知名企业的供应商犯了什么错误,那么它会直接影响到该企业的市场收益。因此,企业需要实时掌握供应商的状态。管理好采购成为企业是否盈利的最关键因素之一。
第二个职能是物流管理。在企业层面,什么样的产品选择什么样的形式运输非常重要。在具体物品运输时,通常的做法是第三方物流介入。而这个过程中,大量的实时信息对决策产生影响。比如,共享单车公司需要决策怎么调配单车才能够保证最大化地给用户提供方便;再如,亚马逊的很多仓库都是自动化的,能够很快地追踪到每一个客户需要的产品,然后把这个产品贴上正确的标签、按正确的地址运送给这个客户。还有一个层面的物流是从公司到客户的物流,从公司到个人的物流管理实际上是很多企业成败的关键。
此外,关于生产制造的决策还包括资源管理、人员管理和质量控制。生产企业很重要的因素是生产量,因为产量越大的话,单位的生产成本就越低,如果产品多样化程度比较高的话,会降低生产效果。现在生产技术的创新使得能够达到生产多样化,从供应链的角度来讲,它带来的是个性化的供应链,也就是说,供应链的组织形式可能对每一个个体客户来说都是不一样的,这是供应链管理的一个大趋势。
最后一个职能是需求预测和计划。所有公司在资源和运作上的计划都是随着需求预测来做的,从公司的角度来讲,如何做好需求预测管理是一个永远的难题。作为供应链管理层面,第一就是决定什么样的产品和服务提供给什么样的客户,第二个很重要的因素是价格,因为需求走势和产品价格有关系的,而市场对于货物价格的反应是供应链管理核心的问题。
工业4.0到来促使供应链管理求变
在大数据时代,工业4.0的到来对供应链管理产生深远影响。首先,公司市场需求预测不再是基于历史销售数据了,大数据会帮助厂商作出智能预测。其次,个性化的服务成为可能,使得市场需求预测从综合预测向个体预测转变,为企业提供更精准的产品级预测指导。同时,大数据对生产领域产生的影响将导致供应链的物流、信息流和资金流的管理方式发生改变,机器设备、人员以及产品之间的信息交互将带来生产方式的深刻变革。机器由于数据的汇集与分析,智能化程度进一步提升,比如自我规划、自我维护的设备逐渐应用于生产,传感器触发的调度适配也有可能实现。这些因素都将引起供应链管理的改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11