
大数据时代 需要一点想象力
今天在业内鼓吹大数据时代即将到来的时候,得到最多的仍然是同样两类反应。虚无派说大数据云山雾罩,看不出有什么钱途。停滞派说大数据有什么新奇,老子的数据很大,挖掘技术很高。我想,今后几年的产业发展又将证明这两类说法的无知与荒谬。
一些不肯认真读点想点东西的人,一看到大数据这个词,就望文生义地想到数据要大,却忘记了大数据的其他基本特性,需要反复加以提醒。
大数据的特性之一是数据的完整性和综合性。很多业内朋友一谈起大数据,就习惯性地盘点起自己那点存货,或者那些可以直接从自身服务中可以获取的东西。考虑到目前互联网的发展还在非常初级的阶段,现有网络服务都是简化,扭曲,片面地对现实世界的浓缩和裁剪,由此产生的数据是零乱的,破碎的,局部的,其中所含有的含金量是极其有限的。如果同意这个世界上的万事万物可以而且正在被数据化和网络化,那么由此产生的大数据就必然是完整的和综合的,不仅包括网络公司通过自身服务所获得的用户行为数据,而且包括社会的,经济的,政治的,自然的方方面面的数据。这些数据当然分散在不同企业,机构和政府部门手中,汇聚整合在一起绝非易事,但操作上的困难并不能否定大数据本身的完整性和综合性。今天之所以讨论大数据时代的到来,是因为互联网发展到目前阶段使得现实世界数据化发展到了一定程度,各种信息终端普及到了一定程度,数据获取的成本降到了一定程度,使得完整和综合的数据不仅是一种理想,也正在变为现实。
大数据的特性之二是数据的开放性和公共性。正是因为完整的综合的大数据难以由一家公司,机构或政府部门所获得,所以大数据必然产生于一个开放的,公共的网络环境之中。这种开放性和公共性的实现取决于若干个网络开放平台或云服务以及一系列受到法律支持或社会公认的数据标准和规范。任何封闭的或单向获取的数据都不可能是大数据,无论这些数据的规模有多大。
大数据的特性之三是数据的动态性和及时性。天体物理学和理论物理学早就依赖于从宇宙间获取的大量数据,类似的学科还有环境生态学,医药学,和自控技术。但是,这和我们今天讨论的大数据不是一回事。今天的大数据是基于互联网的及时动态数据,不是历史的或严格控制环境下产生的东西。
所以,今天我们谈论的大数据是完整综合的,开放公共的,动态及时的,这样的大数据是我们过去从未有机会获取利用过的全新挑战,也是我们未来应该努力去争取利用的全新战略机会。如果有人以为过去积累的那点数据就是大数据,或者过去积累的数据处理利用能力和经验就可以在大数据时代自然领先,那不是无知就是狂妄。
近来媒体上对大数据方向的进展报道颇多,其中一个很能说明我心目中大数据的性质及其利用的前景。据8月30日《纽约时报》的报道:一家名为气候公司(Climate
Corporation)的创业企业每天都会对美国境内超过一百万个地点,未来两年的天气情况进行超过1万次模拟。随后,该公司将根系结构和土壤孔隙度的相关数据,与模拟结果相结合,为成千上万的农民提供农作物保险。
通过遥感获取土壤数据,这和我们过去所熟悉的通过网络服务获取用户网络行为数据不是一回事,数据的概念得以极大的扩充。每天对百万以上地点进行成万次的模拟,其数据量庞大,动态,及时。要想对每块田地提供精准的保险服务,肯定还需要与土地数据相配套的农产品期货数据,气候预测数据,国际贸易数据,国际政治和军事安全数据,国民经济各方面的数据,产业竞争数据,等等。在如此庞杂的大数据基础上推出的商业模式,是创新的,同现有农作物保险方式相比是具备极大竞争力的,是可持续和规模化的。更妙的是,这家公司基于大数据的运营,完全没有进行高额的网络设施投资,只是租用了亚马逊的公共云服务,一个月几万美元而已。
如果留心观察,这样的案例已经很多了,虽然都还比较简单初级,但足以说明问题。如果展开一下我们的想象力,类似上述案例的创新,在即将到来的大数据时代可以在任何行业,任何服务,任何公共管理上出现,由此可能产生的服务和商业模式是无穷尽的。同现有或现在还没有的服务和商业模式相比,服务更加精准,成本更加低廉,利润更加丰厚。这不是目前网络业所熟知的对现有用户数据的挖掘,不是对用户进行更精细的分组,不是现有数据技术的普及应用,而是一个全新的世界,一个全新的网络地球和数据地球。一个理想的前景是,一个以网络业为核心的大数据服务业会成为今后几十年世界经济和社会发展的主要推动力。当然,这事未必一定发生,尤其是在中国。如果我们网络业的朋友们没有雄心,没有想象力,那也可能除了少数公司成为大数据服务业的主力外,其他大部分公司仍然固守在陈旧的网络业内苦苦挣扎,变成大数据时代的传统产业大军中的一员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18