京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中你应该知道的一些内置函数
python内置了一些非常巧妙而且强大的内置函数,对初学者来说,一般不怎么用到,我也是用了一段时间python之后才发现,哇还有这么好的函数,这个函数都是经典的而且经过严格测试的,可以一下子省了你原来很多事情,代码不仅简洁易读了很多,而且不用自己去闭门造车.既方便了自己又减少了bug。
一、sorted()
1)对于一个列表排序
sorted([100, 98, 102, 1, 40])
>>>[1, 40, 98, 100, 102]
2)通过key参数/函数
比如一个长列表里面嵌套了很多字典元素,我们要按照每个元素的长度大小排序
L = [{1:5,3:4},{1:3,6:3},{1:1,2:4,5:6},{1:9}]
new_line=sorted(L,key=lambda x:len(x))
print(new_line)
>>>[{1: 9}, {1: 5, 3: 4}, {1: 3, 6: 3}, {1: 1, 2: 4, 5: 6}]
3)对由tuple组成的List排序
比如下面是学生里面的年龄的一个list
students = [('wang', 'A', 15), ('li', 'B', 12), ('zhang', 'B', 10)]
print(sorted(students, key=lambda student : student[2]))
>>>[('zhang', 'B', 10), ('li', 'B', 12), ('wang', 'A', 15)]
4)用cmp函数排序
students = [('wang', 'A', 15), ('li', 'B', 12), ('zhang', 'B', 10)]
print(sorted(students, cmp=lambda x,y : cmp(x[0], y[0])) )
>>>[('li', 'B', 12), ('wang', 'A', 15), ('zhang', 'B', 10)]
其实对于python的排序要仔细讲,需要一整篇幅讲它的排序算法,内容非常多,感兴趣的可以去看一下源码,看它是如何设计的,这里只是先点一下.
二、map()
map可以根据提供的函数对指定序列做映射,它接受一个函数f和一个list,并通过把函数f以此作用在list上的每个元素,然后返回一个新的list,map函数的入参也可以是多个.注意这个函数一定要有返回值(值值值重要的说三遍)。
不然就会返回新的list 类似[None, None, None, None, None, None, None, None, None]
适合的场景是对列表里面的一些元素需要重复的操作,用map就可以轻松搞定.
三、enumerate()
Python中,迭代永远是取出元素本身,而非元素的索引,有的时候我们需要知道元素的索引比如在一个很长的列表里面是一些网站名,我们希望在打印的时候,也能列出索引。若没有这个函数,我们需要在加一个变量,在循环打印的时候让这个计数变量递增,现在有了enumerate,就不用这么麻烦了,直接搞定.
四、zip()
zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表
这个函数特别是在构建字典序列的时候非常方便 (这招非常巧妙,大家可以仔细揣摩)
五、filter()
filter函数接受一个函数f和一个list,这个函数f的作用是对每个元素进行判断,返回True或者False,这样可以过滤掉一些不符合条件的元素,然后返回符合条件的list.
特别是在处理文件的时候,需要把一些空格,回车和空字符去掉
六、reduce()
reduce函数的用法和map很类似,也是一个函数f和一个list,但是函数的入口参数一定要是两个,reduce也是对每个元素进行反复调用,最后返回最终的值,而map是返回一个list
注意:在python3里面reduce已经从全局函数里面移除了,需要用的话要from functools import reduce
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12