
R语言提供了另外一个能够处理人工神经网络的算法包nnet,该算法提供了传统的前馈反向传播神经网络算法的实现。
操作
安装包与数据分类:
library(nnet)
data("iris")
set.seed(2)
ind = sample(2,nrow(iris),replace = TRUE,prob = c(0.7,0.3))
trainset = iris[ind == 1,]
testset = iris[ind == 2,]
使用nnet包训练神经网络:
iris.nn = nnet(Species ~ .,data = trainset,size = 2,rang = 0.1,decay = 5e-4,maxit = 200)
# weights: 19
initial value 114.539765
iter 10 value 52.100312
iter 20 value 50.231442
iter 30 value 49.526599
iter 40 value 49.402229
iter 50 value 44.680338
iter 60 value 5.254389
iter 70 value 2.836695
iter 80 value 2.744315
iter 90 value 2.687069
iter 100 value 2.621556
iter 110 value 2.589096
iter 120 value 2.410539
iter 130 value 2.096461
iter 140 value 1.938717
iter 150 value 1.857105
iter 160 value 1.825393
iter 170 value 1.817409
iter 180 value 1.815591
iter 190 value 1.815030
iter 200 value 1.814746
final value 1.814746
stoppedafter 200 iterations
调用summary( )输出训练好的神经网络:
summary(iris.nn)
a 4-2-3 network with 19 weights
options were - softmax modelling decay=5e-04
b->h1 i1->h1 i2->h1 i3->h1 i4->h1
-20.60 0.31 -3.84 3.36 7.72
b->h2 i1->h2 i2->h2 i3->h2 i4->h2
-7.15 1.50 2.49 -4.14 5.59
b->o1 h1->o1 h2->o1
-7.28 -3.67 13.16
b->o2 h1->o2 h2->o2
15.90 -16.64 -19.40
b->o3 h1->o3 h2->o3
-8.62 20.31 6.24
在应用函数时可以实现分类观测,数据源,隐蔽单元个数(size参数),初始随机数权值(rang参数),权值衰减参数(decay参数),最大迭代次数(maxit),整个过程会一直重复直至拟合准则值与衰减项收敛。
使用模型iris.nn模型完成对测试数据集的预测
iris.predict = predict(iris.nn,testset,type = "class")
nn.table = table(testset$Species,iris.predict)
nn.table
iris.predict
setosa versicolor virginica
setosa 17 0 0
versicolor 0 13 1
virginica 0 2 13
基于分类表得到混淆矩阵
confusionMatrix(nn.table)
Confusion Matrix and Statistics
iris.predict
setosa versicolor virginica
setosa 17 0 0
versicolor 0 13 1
virginica 0 2 13
Overall Statistics
Accuracy : 0.9348
95% CI : (0.821, 0.9863)
No Information Rate : 0.3696
P-Value [Acc > NIR] : 1.019e-15
Kappa : 0.9019
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.0000 0.8667 0.9286
Specificity 1.0000 0.9677 0.9375
Pos Pred Value 1.0000 0.9286 0.8667
Neg Pred Value 1.0000 0.9375 0.9677
Prevalence 0.3696 0.3261 0.3043
Detection Rate 0.3696 0.2826 0.2826
Detection Prevalence 0.3696 0.3043 0.3261
Balanced Accuracy 1.0000 0.9172 0.9330
在调用predict函数时,我们明确了type参数为class,因此输出的是预测的类标号而非概率矩阵。接下来调用table函数根据预测结果和testset的实际类标号生成分类表,最后利用建立的分类表使用table函数根据caret中的confusionMatrix方法对训练好的神经网络预测性能评估。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02