京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言提供了另外一个能够处理人工神经网络的算法包nnet,该算法提供了传统的前馈反向传播神经网络算法的实现。
操作
安装包与数据分类:
library(nnet)
data("iris")
set.seed(2)
ind = sample(2,nrow(iris),replace = TRUE,prob = c(0.7,0.3))
trainset = iris[ind == 1,]
testset = iris[ind == 2,]
使用nnet包训练神经网络:

iris.nn = nnet(Species ~ .,data = trainset,size = 2,rang = 0.1,decay = 5e-4,maxit = 200)
# weights: 19
initial value 114.539765
iter 10 value 52.100312
iter 20 value 50.231442
iter 30 value 49.526599
iter 40 value 49.402229
iter 50 value 44.680338
iter 60 value 5.254389
iter 70 value 2.836695
iter 80 value 2.744315
iter 90 value 2.687069
iter 100 value 2.621556
iter 110 value 2.589096
iter 120 value 2.410539
iter 130 value 2.096461
iter 140 value 1.938717
iter 150 value 1.857105
iter 160 value 1.825393
iter 170 value 1.817409
iter 180 value 1.815591
iter 190 value 1.815030
iter 200 value 1.814746
final value 1.814746
stoppedafter 200 iterations
调用summary( )输出训练好的神经网络:
summary(iris.nn)
a 4-2-3 network with 19 weights
options were - softmax modelling decay=5e-04
b->h1 i1->h1 i2->h1 i3->h1 i4->h1
-20.60 0.31 -3.84 3.36 7.72
b->h2 i1->h2 i2->h2 i3->h2 i4->h2
-7.15 1.50 2.49 -4.14 5.59
b->o1 h1->o1 h2->o1
-7.28 -3.67 13.16
b->o2 h1->o2 h2->o2
15.90 -16.64 -19.40
b->o3 h1->o3 h2->o3
-8.62 20.31 6.24
在应用函数时可以实现分类观测,数据源,隐蔽单元个数(size参数),初始随机数权值(rang参数),权值衰减参数(decay参数),最大迭代次数(maxit),整个过程会一直重复直至拟合准则值与衰减项收敛。
使用模型iris.nn模型完成对测试数据集的预测
iris.predict = predict(iris.nn,testset,type = "class")
nn.table = table(testset$Species,iris.predict)
nn.table
iris.predict
setosa versicolor virginica
setosa 17 0 0
versicolor 0 13 1
virginica 0 2 13
基于分类表得到混淆矩阵
confusionMatrix(nn.table)
Confusion Matrix and Statistics
iris.predict
setosa versicolor virginica
setosa 17 0 0
versicolor 0 13 1
virginica 0 2 13
Overall Statistics
Accuracy : 0.9348
95% CI : (0.821, 0.9863)
No Information Rate : 0.3696
P-Value [Acc > NIR] : 1.019e-15
Kappa : 0.9019
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.0000 0.8667 0.9286
Specificity 1.0000 0.9677 0.9375
Pos Pred Value 1.0000 0.9286 0.8667
Neg Pred Value 1.0000 0.9375 0.9677
Prevalence 0.3696 0.3261 0.3043
Detection Rate 0.3696 0.2826 0.2826
Detection Prevalence 0.3696 0.3043 0.3261
Balanced Accuracy 1.0000 0.9172 0.9330
在调用predict函数时,我们明确了type参数为class,因此输出的是预测的类标号而非概率矩阵。接下来调用table函数根据预测结果和testset的实际类标号生成分类表,最后利用建立的分类表使用table函数根据caret中的confusionMatrix方法对训练好的神经网络预测性能评估。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27