
Python内置函数reversed()用法分析
这篇文章主要介绍了Python内置函数reversed()用法,结合实例形式分析了reversed()函数的功能及针对序列元素相关操作技巧与使用注意事项,需要的朋友可以参考下
reversed()函数是返回序列seq的反向访问的迭代器。参数可以是列表,元组,字符串,不改变原对象。
1》参数是列表
>>> l=[1,2,3,4,5]
>>> ll=reversed(l)
>>> l
[1, 2, 3, 4, 5]
>>> ll
<listreverseiterator object at 0x06A9E930>
>>> for i in ll:#第一次遍历
... print i,
...
5 4 3 2 1
>>> for i in ll:第二次遍历为空,原因见本文最后
... print i
...
2》参数是列表
>>> l=[3,4,5,6]
>>> ll=reversed(l)
>>> l
[3, 4, 5, 6]
>>> ll
<listreverseiterator object at 0x06A07E10>
>>> list(ll)#第一次
[6, 5, 4, 3]
>>> list(ll)#第二次为空,原因见本文最后
[]
3》参数是元组
>>> t=(4,5,6)
>>> tt=reversed(t)
>>> t
(4, 5, 6)
>>> tt
<reversed object at 0x06A07E50>
>>> tuple(tt)#第一次
(6, 5, 4)
>>> tuple(tt)#第二次为空,原因见本文最后
()
4》参数是字符串
>>> s='cba'
>>> ss=reversed(s)
>>> s
'cba'
>>> ss
<reversed object at 0x06A07E70>
>>> list(ss)#第一次
['a', 'b', 'c']
>>> list(ss)#第二次为空,原因见本文最后
[]
5》参数是字符串
>>> s='1234'
>>> ss=reversed(s)
>>> s
'1234'
>>> ss
<reversed object at 0x06A94490>
>>> ''.join(ss)#第一次
'4321'
>>> ''.join(ss)#第二次为空,原因见本文最后
''
为什么reversed()之后,第二次for循环或第二次list()或第二次tuple()或第二次join()得到的结果为空?我们以第2个例子具体说明一下:
That's because reversed creates an iterator, which is already spent when you're calling list(ll) for the second time.
The reason is that ll is not the reversed list itself, but a listreverseiterator. So when you call list(ll) the first time, it iterates over ll and creates a new list from the items output from that iterator.When you do it a second time, ll is still the original iterator and has already gone through all the items, so it doesn't iterate over anything, resulting in an empty list.
小编来翻译一下:
这是因为反向创建了一个迭代器,该迭代器在第二次调用列表(LL)时已经使用过了。
其原因就是ll不是反转列表本身,而是一个列表反向迭代器。所以当你第一次调用列表(ll),它会遍历ll并且创建一个新的列表从项目输出迭代器。当你再进行一次,ll仍然是原来的迭代器,已经经历了所有的项目,所以它不会再遍历什么,这就造成了空列表。
总结:reversed()之后,只在第一次遍历时返回值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04