
Python内置函数reversed()用法分析
这篇文章主要介绍了Python内置函数reversed()用法,结合实例形式分析了reversed()函数的功能及针对序列元素相关操作技巧与使用注意事项,需要的朋友可以参考下
reversed()函数是返回序列seq的反向访问的迭代器。参数可以是列表,元组,字符串,不改变原对象。
1》参数是列表
>>> l=[1,2,3,4,5]
>>> ll=reversed(l)
>>> l
[1, 2, 3, 4, 5]
>>> ll
<listreverseiterator object at 0x06A9E930>
>>> for i in ll:#第一次遍历
... print i,
...
5 4 3 2 1
>>> for i in ll:第二次遍历为空,原因见本文最后
... print i
...
2》参数是列表
>>> l=[3,4,5,6]
>>> ll=reversed(l)
>>> l
[3, 4, 5, 6]
>>> ll
<listreverseiterator object at 0x06A07E10>
>>> list(ll)#第一次
[6, 5, 4, 3]
>>> list(ll)#第二次为空,原因见本文最后
[]
3》参数是元组
>>> t=(4,5,6)
>>> tt=reversed(t)
>>> t
(4, 5, 6)
>>> tt
<reversed object at 0x06A07E50>
>>> tuple(tt)#第一次
(6, 5, 4)
>>> tuple(tt)#第二次为空,原因见本文最后
()
4》参数是字符串
>>> s='cba'
>>> ss=reversed(s)
>>> s
'cba'
>>> ss
<reversed object at 0x06A07E70>
>>> list(ss)#第一次
['a', 'b', 'c']
>>> list(ss)#第二次为空,原因见本文最后
[]
5》参数是字符串
>>> s='1234'
>>> ss=reversed(s)
>>> s
'1234'
>>> ss
<reversed object at 0x06A94490>
>>> ''.join(ss)#第一次
'4321'
>>> ''.join(ss)#第二次为空,原因见本文最后
''
为什么reversed()之后,第二次for循环或第二次list()或第二次tuple()或第二次join()得到的结果为空?我们以第2个例子具体说明一下:
That's because reversed creates an iterator, which is already spent when you're calling list(ll) for the second time.
The reason is that ll is not the reversed list itself, but a listreverseiterator. So when you call list(ll) the first time, it iterates over ll and creates a new list from the items output from that iterator.When you do it a second time, ll is still the original iterator and has already gone through all the items, so it doesn't iterate over anything, resulting in an empty list.
小编来翻译一下:
这是因为反向创建了一个迭代器,该迭代器在第二次调用列表(LL)时已经使用过了。
其原因就是ll不是反转列表本身,而是一个列表反向迭代器。所以当你第一次调用列表(ll),它会遍历ll并且创建一个新的列表从项目输出迭代器。当你再进行一次,ll仍然是原来的迭代器,已经经历了所有的项目,所以它不会再遍历什么,这就造成了空列表。
总结:reversed()之后,只在第一次遍历时返回值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18