
未来的AI需要数据与区块链的增强
当AI遇上区块链,在不影响个人数据隐私的情况下,人们似乎看到了诚信互联的智能时代就在前方。
人工智能、纳米制造、区块链或下一代互联网、基因编辑,这些当下最热门的技术,正在重新定义人类的生活。未来几十年内的人工智能大多还是可控的,并且会依据行业需求来实现,而这一切需要打造坚实的数据智能基础设施。
今天,在人们追求个性化、服务化、开放化和共享化的过程中,数据不单单限定在类似于机器、软件,而是扩展到行为数据、轨迹数据、医疗健康数据、基因数据或教育数据等全息生命范畴。
舆论中经常出现的机器学习和神经网络,目前的数据训练,也只是让计算机通过现有数据生成函数,从而对未来类似的数据作出判断。
其中,在机器学习的过程中,目前最稀缺的就是实时、不间断、全维度产业链的数据。而这些数据除了先天性的技术性采集难问题,更多的障碍还在于那些在工业革命发展至今的传统组织所聚集的数据“孤岛”。
根据麦肯锡全球研究院的数据,互联网每颠覆一个工作岗位就创造出2.6个新工作岗位。人工智能在突飞猛进发展,并且带来就业与财富的当下,最缺的就是数据。恰恰今天仍然有众多核心数据是处于机构中心垄断的状态,不能帮助机器合理地自我学习。
因此,数据开放与共享,当成为互联网时代的主题。互联网促进了个性化体验,抛弃了静态的、放之四海皆准的单一体验。而数据开放与共享,需要建立在一种能够彻底让数据流动,让产生的价值全链流动的智能基础设施,而来自嬉皮士文化的区块链技术似乎就是为此而生。
无论是ARPAnet(阿帕网,由美国高级研究计划署组建)还是TCP/IP(传输控制协议/因特网互联协议),互联网的诞生就是基于分布式计算、分组交换与无中心化为前提。但是,真正的去中心化的数据世界还离我们非常遥远。如果说第一代互联网的今天解决了人类信息传输问题,那么我们期待的第二代互联网应该可以解决的是信息真伪问题。而区块链技术就可以解决AI应用中数据可信度问题。
源自上世纪80年代,并且在密码学中被广泛采纳的零知识证明计算方法,在区块链发展技术中得到了实践。当AI遇上区块链,在不影响个人数据隐私的情况下,人们似乎看到了诚信互联的智能时代就在前方。
人工智能领域数学和算法的发现和发明,是整个数据智能基础设施建设工作中的重中之重。数据的智能基础设施建设,不仅可以帮助机器学习提高精确性和价值性,更重要的是,其还可以驱动经济社会的发展,帮助企业找准核心目标、聚焦关键任务、发挥核心优势,增强资产匹配风口的能力。
实体经济是互联网经济的基础,数据是智能未来的基础。强化数据智能基础设施建设,将所有与智能生活有关的要素重新整理,有助于企业走出同质化、低效益的困境,向智能时代共同迈进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18