京公网安备 11010802034615号
经营许可证编号:京B2-20210330
给要入门量化分析的人一些建议
针对你数学、物理较好以及有一定C基础的情况,我的建议(也是对所有想要入门量化分析的人)的建议是:
一. 数学
继续打好数学基础,学一学集合论、统计学方面的知识,方便以后可以从初级经济学的学习转向中高级。你大一,集合论和统计学如果没学过建议先入个门。比如国内著名的统计学大师陈希孺先生的《概率论与数理统计 (豆瓣)》、《数理统计学教程 (豆瓣)》等等,写得非常好,请仔细揣摩体会。
二. 经济学&金融学
数学基础可以了,如果学校教的你也觉得很简单,那就看一点计量经济学和中级微观经济学方面的书,看能不能看懂。
比如《计量经济学导论 (豆瓣)》这本书就不错,还有经典的范里安的中级微观经济学教材:《微观经济学 (豆瓣)》,以及经典圣经:《期权、期货和其他衍生品(第5版) (豆瓣)》。
当然,如果你想要出国深造,那么选择看英文版的是很好的选择。
但是如果你是想要更好地利用时间,看中文版也是不错的选择,因为看中文版肯定比英文版快得多。
三. 计算机与编程
1. 计算机
你如果之前没有学过计算机相关知识,我建议可以先看一本书入个门,了解计算机的大致工作原理,我推荐研读一下:《计算机科学概论(第11版) (豆瓣)》
2. 语言
然后,你既然要学习金融方面的知识,我建议可以暂时不学C或者C++,而选择学习python,python更简单,数理分析、科学计算能力更强大。我推荐看一下:《Python基础教程 (豆瓣)》,这本书讲的是python2.7,对初学者而言,还是看这本比较好。
你还可以参照统计语言R来更深入地理解python,我推荐《R语言编程艺术 (豆瓣)》。
然后你可以看一下专讲python用作数据分析的好书:《利用Python进行数据分析 (豆瓣)》。(这本书里面讲的python以及对应的pandas、scipy、numpy模块都是基于python2.7的——这就是为什么我推荐的python入门教材是python2.7的,对于初学者,版本问题很可能是个坑,学2.7更好。)
另外,家中常备:《Python标准库 (豆瓣)》,很多问题就不用重新造轮子了。
3. 未来
计量方法严格来讲只是传统方法,为了应对未来、成为宽客,建议学习数据挖掘、机器学习、人工智能方面的知识,我推荐《数据挖掘导论 (豆瓣)》,《机器学习
(豆瓣)》等等书籍。
另:python作为解释型语言,性能不及C等编译型的语言,特别是对于高频交易等,以防万一,建议还是入一下计算机的算法、数据结构、计算机系统坑。。。。当然,这又是个大坑。
四. 实践
现在有一些在线的金融系统,可以给你机会让你写你自己的模型的,你多留意一下,也可以问下老师,闲来没事儿写几个交易模型试一试。
据我所知目前大多数写交易模型的,都没有较强的综合能力(综合经济金融、数学、编程这三个方面),你要想比他们都强,那就把这三个方面的基础都打好。
最后,少年,我看你骨骼惊奇,这本《集体智慧编程 (豆瓣)》我就送给你了,写一个遗传算法为内核、并且底层优化的具有进化特征的交易模型吧,特别是在数据环境本身就具有进化特性的情况下,亮瞎他们!——至少听起来很牛逼~~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27