京公网安备 11010802034615号
经营许可证编号:京B2-20210330
给要入门量化分析的人一些建议
针对你数学、物理较好以及有一定C基础的情况,我的建议(也是对所有想要入门量化分析的人)的建议是:
一. 数学
继续打好数学基础,学一学集合论、统计学方面的知识,方便以后可以从初级经济学的学习转向中高级。你大一,集合论和统计学如果没学过建议先入个门。比如国内著名的统计学大师陈希孺先生的《概率论与数理统计 (豆瓣)》、《数理统计学教程 (豆瓣)》等等,写得非常好,请仔细揣摩体会。
二. 经济学&金融学
数学基础可以了,如果学校教的你也觉得很简单,那就看一点计量经济学和中级微观经济学方面的书,看能不能看懂。
比如《计量经济学导论 (豆瓣)》这本书就不错,还有经典的范里安的中级微观经济学教材:《微观经济学 (豆瓣)》,以及经典圣经:《期权、期货和其他衍生品(第5版) (豆瓣)》。
当然,如果你想要出国深造,那么选择看英文版的是很好的选择。
但是如果你是想要更好地利用时间,看中文版也是不错的选择,因为看中文版肯定比英文版快得多。
三. 计算机与编程
1. 计算机
你如果之前没有学过计算机相关知识,我建议可以先看一本书入个门,了解计算机的大致工作原理,我推荐研读一下:《计算机科学概论(第11版) (豆瓣)》
2. 语言
然后,你既然要学习金融方面的知识,我建议可以暂时不学C或者C++,而选择学习python,python更简单,数理分析、科学计算能力更强大。我推荐看一下:《Python基础教程 (豆瓣)》,这本书讲的是python2.7,对初学者而言,还是看这本比较好。
你还可以参照统计语言R来更深入地理解python,我推荐《R语言编程艺术 (豆瓣)》。
然后你可以看一下专讲python用作数据分析的好书:《利用Python进行数据分析 (豆瓣)》。(这本书里面讲的python以及对应的pandas、scipy、numpy模块都是基于python2.7的——这就是为什么我推荐的python入门教材是python2.7的,对于初学者,版本问题很可能是个坑,学2.7更好。)
另外,家中常备:《Python标准库 (豆瓣)》,很多问题就不用重新造轮子了。
3. 未来
计量方法严格来讲只是传统方法,为了应对未来、成为宽客,建议学习数据挖掘、机器学习、人工智能方面的知识,我推荐《数据挖掘导论 (豆瓣)》,《机器学习
(豆瓣)》等等书籍。
另:python作为解释型语言,性能不及C等编译型的语言,特别是对于高频交易等,以防万一,建议还是入一下计算机的算法、数据结构、计算机系统坑。。。。当然,这又是个大坑。
四. 实践
现在有一些在线的金融系统,可以给你机会让你写你自己的模型的,你多留意一下,也可以问下老师,闲来没事儿写几个交易模型试一试。
据我所知目前大多数写交易模型的,都没有较强的综合能力(综合经济金融、数学、编程这三个方面),你要想比他们都强,那就把这三个方面的基础都打好。
最后,少年,我看你骨骼惊奇,这本《集体智慧编程 (豆瓣)》我就送给你了,写一个遗传算法为内核、并且底层优化的具有进化特征的交易模型吧,特别是在数据环境本身就具有进化特性的情况下,亮瞎他们!——至少听起来很牛逼~~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12