
大数据发展需结合三大IT趋势
大数据不仅仅是作为企业的研究对象。大多数企业都可以从中受益是确定无疑的。例如,在英国,连锁超市乐购通过分析其收集的庞大的客户行为信息数据集,来制定促销计划并调整商品价格。
IDC观察到,亚太地区市场具有其独特的特征,例如以人口众多的特大城市为中心的分布式的制造中心,数据共享和流体法规创造了显著的新机遇。然而,在亚洲,许多大企业中心只是在数据倡议下建设了大型数据存储库。虽然这是确实是非常重要的第一步,但这并不等于企业就真正实现了对于大数据利益概念的理解。购买所有所需的服务器来处理和分析数据,即使该处理过程可能只需要几个小时、一个星期或一个月,如此昂贵的成本,会导致资源在其他时间没有被充分利用。
为了更具经济和战略意义,亚洲企业的CIO们必须将IT的三大趋势的力量结合起来:大数据、虚拟化和云服务。虚拟化和云计算是促使大数据使用的推动力量,使得创造高度自动化的大型池的计算成为可能,以便处理大数据量。三大趋势的组合将创建一个灵活的、可扩展的、智能化的大数据应用程序的基础。
因此,经济上讲,企业可以以基础设施即服务的一种形式从云供应商那里“租赁”几乎无限的存储容量,而只需要支付他们使用的容量的费用。自此,存储和处理能力的问题就解决了。
然而,从云数据中心迁移大型数据集将显示出“大数据系统”中的薄弱环节,一个不是用来处理大量数据的网络。随着令人眼花缭乱的新服务和数据势不可挡的崛起,网络容量问题突显,这个问题不能通过简单的不断安装或租赁较大的数据存储空间就能解决。
相反,使用一个虚拟数据中心的架构是有效地处理大数据的更好的服务方法,在单个数据中心的物理墙作为一个逻辑实体有效地打破了连接多个数据中心。换句话说,这就创造了一个“没有围墙的数据中心”,使用一个高性能的“云骨干网络的无缝连接到一个更大的企业和运营商数据中心之间的共享资源池。”
通过虚拟化和集中所有的数据中心和网络资产,企业可以根据不断变化的需要,允许灵活的配置和迁移工作负载。这是唯一的设置,可以非常经济地满足大数据带来的基础设施的挑战。
Forrester称,绝大多数亚太大数据中心主要是大型数据存储库,其次是为用户提供更先进的数据挖掘和可视化工具。但他们并不是 “没有围墙的数据中心”,无法以最有效的方式允许大数据处理,以满足企业的业务目标。
为了使大数据适合于您的企业,以便使得其计算能力可以很容易地参与处理您企业的数据集,你需要一个高性能的连接:从您的数据中心到云服务提供商的数据中心。但是,始终保持连接的静态连接服务造价非常昂贵。而
“按性能需求”的连接服务,可以让您在需要时打开带宽,而不需要时,将其关闭。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18