京公网安备 11010802034615号
经营许可证编号:京B2-20210330
过去1年大数据领域薪资有多高
互联网在经历前几年的繁荣之后,现在开始进入寒冬,资本家不再像以前那样大胆地投资,纷纷攥紧自己的口袋。但是从整个互联网行业来看,大数据却一枝独秀,逐渐崛起。
我们正处于一个大数据飞速发展的时代,我们所做的一切事,不论是在互联网中或者是互联网之外,都会留下数字的痕迹。比如刷卡购物,网络搜索,手机上网,乃至在网上每一个小小的点击都会被一一记录下来。各行各业,大数据技术应用也越来越广泛,对于大数据人才的需求也越来越大。
如果你学的是大数据,那么恭喜你,你的发展良机来了。你将有可能成为大数据工程师,走向人生巅峰。
在数据驱动的未来,大数据人才市场势必会越来越大,而现在仅仅是大数据起步的进阶阶段,现在入行正是恰逢其时。中国互联网行业正处于一个新的飞速发展时期,对人才的需求也在同步急剧增长。2017年,发展大数据产业被写入政府工作报告中,大数据开始不只是出现在企业的战略中,也开始出现在政府的规划之内,可以说是互联网时代的宠儿。
是不是总是听到身边人说大数据发展如何如何好,工资高,但是大数据薪资待遇到底是个什么样的情况呢?今天就结合一些数据来了解下大数据行业的工资待遇的真实情况。
大数据招聘网站工资待遇
下面是从拉勾网上查询的大数据人才的招聘信息,目前对于没有工作经验的大数据人才的薪资也在1万左右,同时携程、滴滴、百度等大型互联网企业也在招聘大数据人才,同时招聘的门槛比较低。
北京大数据工程师薪酬一览
hadoop工程师水平
北京hadoop平均工资:¥ 20130/月,取自 1734 份样本。
数据挖掘工程师
北京数据挖掘平均工资:¥ 21740/月,取自 3449 份样本,较 2017 年,增长 20.3%。
此外,C君采集到的数据还显示,在工龄三年以下的人群中,大数据工程师、AI 工程师、全部工程师的平均年薪分别为 29.22 万元、29.98 万元、23.73 万元;在工龄 8-10 年的人群中,三者的平均年薪分别达到了 44.23 万元、45.71 万元、39.91 万元。可见,在大数据领域,随着工作年限的增长,薪资增幅较大。
大数据之所以被寄予厚望,是因为数据已经逐渐成为企业的核心竞争力,通过分析、挖掘数据的价值,企业可提前获知客户需求,预测其消费习惯和趋势。让管理者的一切决断都有据可依,不再盲目,降低企业风险。
近两年,数字化转型浪潮席卷各行各业,越来越多的传统行业开始认识到数据的价值。
Informatica 前主席兼首席执行官苏哈比·阿巴斯曾坦言,信息时代唯一最有价值的资产就是数据,想要更好地了解客户、提高企业运营效率及业务灵活度都离不开数据的支撑。
据第三方机构预测,到 2020 年,每一位互联网用户每日就能产生 1.5GB 的流量,一家智能工厂每天将产生 1PB 的数据,而云视频服务提供商每日则将产生高达 750PB 的视频数据。
可见,未来数据规模将达到前所未有的数量级,企业对于数据的管理需求也将极大的提升,对于大数据人才更是如此。
在去年(2017),CSDN 做了一次开发者大调查,调查结果显示,企业构建大数据平台面临的主要问题是人才的缺失。当然,大数据应用规划与技术选型也是困扰企业的现实问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04