
发挥大数据价值的三种途径_数据分析师
关于大数据工作的开展是技术驱动还是业务需求驱动的争论一直都有,其实现在看来这种争论没有太大意义。
如果非要说点什么,可以这样看:对于已经有明确商业价值模式的领域,技术驱动的成分更浓,比如搜索、互联网广告、推荐系统等;而对于商业价值模式模糊,甚至根本没有意识到有商业价值点的场景,业务需求驱动的模式就更有用武之地。
而且,有一点是可以达成共识的,你的大数据只是静静的躺在Hadoop集群里,而没有在某个领域(或场景、流程、产品)中发挥价值,是没有任何意义的,只是让地球更加不低碳而已。
说到如何让大数据变现, Precog的联合创始人John De提到了两块:数据驱动的流程(data-driven processes)和数据驱动的产品(data-driven products)。
类似的思想以前也提到过,如果再说详细点,我认为发挥大数据价值的途径可以有三类:
1)通过数据驱动流程的精细化、智能化
大数据对企业流程的优化已经可以渗透到几乎各个环节,诸如营销流程、会员管理流程、产品管理流程、人力资源优化等等都可以看到他们的身影。
你可以预测未来的销量,已更好的分配资源;你可以为商品找到潜在的喜好用户,以开展主动营销活动;你也可以细分既有用户的各种行为模式,以为产品的优化提供参考;你还可以看看什么员工更稳定、哪些员工会离职……
这些管理、运营流程的改进主要集中为两个词:效率、效果,驱动的源头便是在这个两个词的环节上出现了越来越严重的问题。
在这个环节中,数据挖掘应用建模者的需求会高一些。
2)打造数据驱动的数据产品
当你要改造外部公司的流程时,或者自己内部频繁出现的某类流程优化过程,往往需要将大数据的价值整合起来,通过一款数据产品表现出去。比如,淘宝为卖家提供量子恒道产品,帮助卖家更好的经营自己的店铺;比如电商网站内部频繁出现的交叉销售需求,可以给予用户的行为数据打造个性化推荐系统。
根据各方参与度和界限的不同,数据产品可以有很多模式,最简单的,直接出售自己的数据;或者在自己数据的基础上“深加工”再出售;也可以购买多家的数据,自己整合后提供更优质的某种服务,提供诸如定向广告、广告效果监测等;或者不提供数据服务,只提供计算能力,比如类似百分点的推荐引擎;也可以众包模式采集数据,汇集后形成数据交易市场;
这一类别中,成熟的产品类型是搜索、推荐、计算广告,这三个方向更需要大数据技术专家,同时具备一定的商业观、产品观的人才;而此外,还有一些相对不成熟的或短期内没有形成强技术壁垒模式的产品类型,比如上面说的量子恒道、比如大量的第三方微博营销平台,不是说这些产品不需要高深的技术,而且在当前阶段,更需要的是满足客户的“温饱需求”,未来逐渐加重技术驱动的比重。
3)打造数据驱动的服务产品
之所以把这一类单独提出,主要是这类产品的用户往往是C端,他们大都不会去考虑企业经营、流程层面的问题,而更关注产品的功能及体验。而这类产品和普通的互联网产品的区别在于是否是大数据技术密集型产品,还是人力密集型的产品。
举个例子,要打造一款餐饮服务产品,用传统的“扫街”或积累用户评价的模式就显得人力密集一点;而如果基于用户在特定网站的浏览轨迹进行内容挖掘,进而得到用户的餐饮相关标签(口味、位置、消费力),基于此推出餐饮服务产品则更像我们说的数据驱动的服务产品。
再比如传统门户模式 vs 个性化阅读模式也是类似;包括第二类中的个性化推荐模式,从用户侧看也可以视为数据驱动的服务产品。或许,未来的所有服务产品都会是大数据驱动的,但目前来看还有很长的路要走。本文来自:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10