
深入理解python中函数传递参数是值传递还是引用传递
目前网络上大部分博客的结论都是这样的:
Python不允许程序员选择采用传值还是传 引用。Python参数传递采用的肯定是“传对象引用”的方式。实际上,这种方式相当于传值和传引用的一种综合。如果函数收到的是一个可变对象(比如字典 或者列表)的引用,就能修改对象的原始值——相当于通过“传引用”来传递对象。如果函数收到的是一个不可变对象(比如数字、字符或者元组)的引用,就不能 直接修改原始对象——相当于通过“传值”来传递对象。
你可以在很多讨论该问题的博客里找到以上这一段话。
但是在实际操作中我却发现一个问题:
l=[1,2,3]
def a(x):
x=x+[4]
a(l)
print(l)
这段代码的输出为:
[1,2,3]
为什么是这样呢,list是可变对象,按照上面的结论来说传递方式是引用传递,我应该在函数里能对它进行修改呀?难道不应该输出[1,2,3,4]吗?
我觉得我上面引用的那段大多数博主的结论,其实非常不好理解,而且没有讲到本质,看的云里雾里的。
经过我后面的多次试验,得到以下结论:
其实在python中讨论值传递还是引用传递是没有意义的,要真正对这些情况作出解释,其实是应该搞明白python(对可变对象和不可变对象的)赋值过程中是如何分配内存地址的。
接下来,我们不讨论值传递和引用传递的问题。
让我们做一个非常简单的小实验,其中,id()可以查看变量在内存中的地址:
l1=[1,2,3]
l2=[1,2,3]
a=1
b=1
print(id(l1))
print(id(l2))
print(id(a))
print(id(b))
在我的电脑中的运行结果:
12856594504
12856915080
1643643344
1643643344
可以发现,对于可变对象list来说,即便列表内容一模一样,python也会给它们分配新的不同的地址。
然而,对于不可变对象int来说,内存里只有一个1。即便再定义一个变量c=1,也是指向内存中同一个1。换句话说,不可变对象1的地址是共享的。
接下来让我们看看在函数中调用可变对象和不可变对象,并修改他们的值,会是一个什么情况。
对于不可变对象int,我们来看看最简单的情况:
a=1
print(id(a))
def x(a):
print(id(a))
b=a
print(id(b))
x(a)
运行得到:
1643643344
1643643344
1643643344
这看起来就是一个引用传递,函数外的a、函数里的a和b都指向了同一个地址。
但我们再来看一个极端情况:
a=1
print(id(a))
def x():
b=1
print(id(b))
x()
运行得到:
1643643344
1643643344
很神奇不是吗?函数外定义的a和函数内定义的b没有任何关系,但它们指向同一个地址!
所以你说如何判断它是值传递还是引用传递?讨论这个问题根本没有意义,因为内存里只有一个1。当我把值1传递给函数里的某一个变量的时候,我实际上也传递了地址,因为内存里只有一个1。
甚至于说我直接给函数里的b赋值1都可以让函数外的a和函数内的b指向同一个地址。
下面来看看传递可变对象list的情况:
l=[1,2,3]
print(id(l))
def a(x):
print(id(x))
x.pop()
print(x)
print(id(x))
x=x+[3]
print(x)
print(id(x))
a(l)
运行得到
883142451528
[1, 2]
[1, 2, 3]
可以看到,当我们把函数外的列表L传递给函数后,x的地址和L是一样的,这看起来就是一个引用传递,没问题。
继续往下,我们调用x本身的方法pop后,x变成[1,2],并且x的地址没变,这也没什么问题。
但是当我们给x赋值以后,x的地址就变了。
也就是说,只要创建一个新的可变对象,python就会分配一个新的地址。就算我们创建的新可变对象和已存在的旧可变对象完全一样,python依旧会分配一个新的地址(见本文上半部分那个‘非常简单的小实验')
而pop并不是创建新的可变对象,pop是对已有的可变对象进行修改。
所以可以总结为:
在python中,不可变对象是共享的,创建可变对象永远是分配新地址
这个时候我们再回过头来思考值传递和引用传递的问题,就会发现在python里讨论这个确实是没有意义。
我们可以说:python有着自己的一套特殊的传参方式,这是由python动态语言的性质所决定的
总结
以上就是本文关于深入理解python中函数传递参数是值传递还是引用传递的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29