
深入理解python中函数传递参数是值传递还是引用传递
目前网络上大部分博客的结论都是这样的:
Python不允许程序员选择采用传值还是传 引用。Python参数传递采用的肯定是“传对象引用”的方式。实际上,这种方式相当于传值和传引用的一种综合。如果函数收到的是一个可变对象(比如字典 或者列表)的引用,就能修改对象的原始值——相当于通过“传引用”来传递对象。如果函数收到的是一个不可变对象(比如数字、字符或者元组)的引用,就不能 直接修改原始对象——相当于通过“传值”来传递对象。
你可以在很多讨论该问题的博客里找到以上这一段话。
但是在实际操作中我却发现一个问题:
l=[1,2,3]
def a(x):
x=x+[4]
a(l)
print(l)
这段代码的输出为:
[1,2,3]
为什么是这样呢,list是可变对象,按照上面的结论来说传递方式是引用传递,我应该在函数里能对它进行修改呀?难道不应该输出[1,2,3,4]吗?
我觉得我上面引用的那段大多数博主的结论,其实非常不好理解,而且没有讲到本质,看的云里雾里的。
经过我后面的多次试验,得到以下结论:
其实在python中讨论值传递还是引用传递是没有意义的,要真正对这些情况作出解释,其实是应该搞明白python(对可变对象和不可变对象的)赋值过程中是如何分配内存地址的。
接下来,我们不讨论值传递和引用传递的问题。
让我们做一个非常简单的小实验,其中,id()可以查看变量在内存中的地址:
l1=[1,2,3]
l2=[1,2,3]
a=1
b=1
print(id(l1))
print(id(l2))
print(id(a))
print(id(b))
在我的电脑中的运行结果:
12856594504
12856915080
1643643344
1643643344
可以发现,对于可变对象list来说,即便列表内容一模一样,python也会给它们分配新的不同的地址。
然而,对于不可变对象int来说,内存里只有一个1。即便再定义一个变量c=1,也是指向内存中同一个1。换句话说,不可变对象1的地址是共享的。
接下来让我们看看在函数中调用可变对象和不可变对象,并修改他们的值,会是一个什么情况。
对于不可变对象int,我们来看看最简单的情况:
a=1
print(id(a))
def x(a):
print(id(a))
b=a
print(id(b))
x(a)
运行得到:
1643643344
1643643344
1643643344
这看起来就是一个引用传递,函数外的a、函数里的a和b都指向了同一个地址。
但我们再来看一个极端情况:
a=1
print(id(a))
def x():
b=1
print(id(b))
x()
运行得到:
1643643344
1643643344
很神奇不是吗?函数外定义的a和函数内定义的b没有任何关系,但它们指向同一个地址!
所以你说如何判断它是值传递还是引用传递?讨论这个问题根本没有意义,因为内存里只有一个1。当我把值1传递给函数里的某一个变量的时候,我实际上也传递了地址,因为内存里只有一个1。
甚至于说我直接给函数里的b赋值1都可以让函数外的a和函数内的b指向同一个地址。
下面来看看传递可变对象list的情况:
l=[1,2,3]
print(id(l))
def a(x):
print(id(x))
x.pop()
print(x)
print(id(x))
x=x+[3]
print(x)
print(id(x))
a(l)
运行得到
883142451528
[1, 2]
[1, 2, 3]
可以看到,当我们把函数外的列表L传递给函数后,x的地址和L是一样的,这看起来就是一个引用传递,没问题。
继续往下,我们调用x本身的方法pop后,x变成[1,2],并且x的地址没变,这也没什么问题。
但是当我们给x赋值以后,x的地址就变了。
也就是说,只要创建一个新的可变对象,python就会分配一个新的地址。就算我们创建的新可变对象和已存在的旧可变对象完全一样,python依旧会分配一个新的地址(见本文上半部分那个‘非常简单的小实验')
而pop并不是创建新的可变对象,pop是对已有的可变对象进行修改。
所以可以总结为:
在python中,不可变对象是共享的,创建可变对象永远是分配新地址
这个时候我们再回过头来思考值传递和引用传递的问题,就会发现在python里讨论这个确实是没有意义。
我们可以说:python有着自己的一套特殊的传参方式,这是由python动态语言的性质所决定的
总结
以上就是本文关于深入理解python中函数传递参数是值传递还是引用传递的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18