
拥抱大数据:“数”中自有黄金屋
新的石油”、“类似货币或黄金的新型经济资产”、“未来的自然资源”……
今天,当人们在评价种类广泛、数量庞大、产生和更新速度惊人的大数据时,几乎没有人会吝啬这些极富有渲染性甚至有些耸人听闻的话语。伴随着大数据在各行各业的探索之路的启程,其蕴含的巨大价值所显露出的“冰山一角”就已然拥有足以令世人惊叹的力量。
大数据究竟价值几何?
“当前,数据就是生产资料,对大数据的合理共享和利用,就会创造出巨大的财富。”中国工程院院士邬贺铨在接受《人民邮电》报记者采访时如是说。正因为大数据有着公认的“生产资料”的属性,因此其创造财富的空间,几乎是不受任何限制的,其触角可以延伸至各行各业。
从宏观经济到微观经济,从工业到农业,从制造业到服务业,大数据就如同埋藏在沙漠中的金子一样,正在散发出迷人的光芒。
正如邬贺铨所说:“大数据技术可以运用到各行各业,引发新的产业变革,带动新的产业发展。”来自美国研究机构的统计数据也有力地证明了这一点:大数据能够为美国医疗服务业每年带来3000亿美元的价值,为欧洲的公共管理每年带来2500亿欧元的价值,帮助美国零售业提升60%的净利润,帮助美国制造业降低50%的产品开发和组装成本。
谁率先把握住了大数据的机遇,谁就拥有了创造新的财富的可能,拥有了在激烈的市场竞争中傲视群雄的可能。
因为通过对海量数据的分析,可以发现行业的运行规律、市场的偏好与机会等这些最为宝贵的信息,从而让企业决策变得更加有的放矢。以一瓶价格并不贵、看似不起眼的矿泉水为例,基于对一线销售数据的实时分析与更新进行的经营战略和业务策略调整,居然能够带来销售额从20亿元到百亿元的提升,这正是发生在农夫山泉身上的真实案例。类似的案例越来越多,与此同时,大数据的价值也在各行各业中显露出来。现在,几乎无人会质疑大数据的价值,如何获取价值,则成为人们当前关注的焦点。
如何从沙漠中淘到黄金?
尽管大数据有着巨大的价值,但面对广阔的数字沙漠,如何才能发现埋藏于其中星星点点的黄金呢?
“今天的数据是泛滥的,低密度、杂乱无章、海量的大数据本身,并没有什么太多的价值,只有对大数据的挖掘和处理,才能产生价值。”北京航空航天大学校长、中科院院士怀进鹏向《人民邮电》报记者抛出了如是观点,而这正代表了时下业界的主流思潮。从大数据“不仅如此多,而且变化也如此快”的现状出发,“怎么才能挖掘出有价值的东西”,就成为淘金的必由之路了。对此,怀进鹏认为,必须依靠技术、科学的手段,例如寻找到最优的算法和最简单的算法。
事实上,大数据的兴起,与技术的进步几乎是相伴而生的。正如中国联通信息化事业部副总经理耿向东在接受记者采访时再三强调的那样:“过去,对数据的处理成本比较高,因此当人们在考虑到整体拥有成本这一巨大代价时,就会放弃对数据的处理;现在,不仅数据处理的手段变得丰富起来,而且成本也得到了降低,从而令人们能够方便、规模地应用大数据。”正是因为计算、存储等技术的飞速发展和成本的降低以及软硬件一体机等创新产品的出现,促使过去数据挖掘的两大难题迎刃而解,即存在着无法处理的数据和处理成本过高问题,最终让大数据实现了今天的价值化。
值得注意的是,应对数据挖掘的挑战,将围绕数据价值化的全过程。邬贺铨表示,从数据收集、数据存储到数据处理和结果的可视化呈现这四个环节,大数据技术的运用都面临着挑战。与此同时,一个全新的职业——数据科学家也正在诞生,而《哈佛商业评论》甚至称其为21世纪“最性感”的工作。
谁来保卫我们的“财富”?
与大数据创造的财富相伴的是人们自然而然产生的对于安全的渴望。因为缺少安全保证的财富,并不是真正地“抓”在了手中。可以说,安全是大数据不能回避而且在应用之初就必须给出解决方案的课题。
“没有坏数据,只有对数据的不合理使用。”微软研究及策略部门主管克瑞格·蒙迪用简单的一句话道出了大数据安全的核心所在。今天,当谁都可以利用数据挖掘工具获取、分析数据时,如同“皇冠上明珠”的大数据就面临着谁都可以触摸的危险。在大数据时代,如何避免数据被窃取和不合理使用?答案同样是依靠技术进步。例如,世界经济论坛在2013年2月即提出要通过高端科技来保护隐私,将安全策略的重心从管理转移到对数据的限制使用上来。
确保数据的合理使用,离不开技术和制度的“双管齐下”。例如,世界经济论坛就提出所有对于数据的使用都应该登记,同时对于那些违反规定滥用数据的人要采取处罚措施。而耿向东也表示,中国联通目前正在从技术和制度两方面入手确保数据的安全,例如对用户信息进行加密、为信息传输提供通道保护等。
不容忽视的是,对于“财富”的保护,反过来也会催生出新的商机。大数据正在重构信息安全市场,而那些能够率先切入这场变革的安全厂商,无疑会为未来抢占新的制高点奠定一个好的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29