京公网安备 11010802034615号
经营许可证编号:京B2-20210330
资本资产定价模型简介-多因子寻找Alpha&统计套利
今天简单分享一下现在最为流行的两种量化方法,和量化方法本身需要注意的问题。资本资产定价模型将投资组合的期望收益由两部分组成:alpha收益为投资组合超越市场基准的收益,beta收益为投资组合承担市场系统风险而获得的收益。通过对冲交易剥离或降低投资组合的系统风险(beta收益),获取纯粹的alpha收益,可以使得投资组合无论在市场上涨或下跌时均能获取稳定的绝对收益。
在股票市场的波动中,alpha收益源于资产的相对定价偏差:通过寻找市场中相对定价发生偏差的资产,并识别偏差的程度,在偏差足够大的时候进行交易,可以获取资产相对定价回归的alpha收益。因此,投资组合通过频繁的、细小的价差收益的累积,获取长期稳定的回报。
候选模型的设想和构思、有效性检验和综合模型的建立
① 研究流程——量化模型的建立
量化模型的建立是量化投资的核心,模型的有效程度直接决定量化投资的业绩表现。模型的建立主要分为候选模型的设想和构思、有效性检验和综合模型的建立三个步骤。
候选模型的设想和构思依赖两方面的能力,一方面对大数据的处理分析能力,通过对历史数据的学习,依靠计算机和统计知识寻找有效策略;另一方面依赖于对经济逻辑的理解和市场经验。两方面能力的结合产生更多、更有效的策略是增强模型有效性和提高收益率的关键。
候选模型的有效性检验基于历史数据回溯检验,考察策略的收益率、波动率、夏普比、收益回撤比,与市场或其他策略的相关性等,当策略的各类指标满足要求(策略的收益稳定、风险小)时,该策略通过了有效性检验,否则策略的有效程度不高,需要做进一步的修改。
在构建好有效策略的基础上,还需要结合生产环境中实际情况(交易限制、成本限制、风控约束等),利用金融工程手段对策略进行调整和优化,使策略更好的实现预期收益。
② 投资流程
科学的投资流程是实现量化模型收益的基础,投资流程包括根据量化模型生成目标组合,将组合通过算法交易系统向柜台发送订单,交易的风控系统对交易和当前组合的风险进行监控。
统计套利、无风险套利和多因子模型
统计套利交易:在对历史数据进行统计分析的基础之上,估计市场上各个资产相互之间在收益率、价格、成交量等数据的统计关系,并结合其他基本面数据分析进行的套利交易。相比于无风险套利,统计套利少量增加了一些风险,但是由此获得更多的套利机会,和更高的超额收益。
无风险套利交易:利用市场的无效性,当市场上某一投资组合定价出现偏差(该偏差大于此次套利交易的成本),并且该偏差在未来一段的时间内会确定消失,交易该组合并在其价值回归时平仓,即可在不承担市场风险的前提下获取确定的回报。当前,A股市场的无风险套利机会主要包括股指期货的期现套利、跨期套利、ETF套利、封闭式基金套利、可转债套利等。
多因子模型:量化选股中最常见的一类模型,其基本思想就是找到某些和收益率最相关的指标。并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或者跑输市场。如果跑赢,则可以做多该组合,如果是跑输,则可以做空该组合,做空不能实现的部分以做空股指期货来替代,这样构造的一个市场中性的投资组合来获得绝对收益。
缺少有效风险管理的量化策略难以实现预期收益
风险管理是量化投资中关键的一环,缺少有效风险管理的量化策略是难以实现预期收益的。因此,量化投资的从模型的构建到交易的实现,都极为重视组合和交易的风险管理,只有把风险控制在合理的范围内,量化策略的收益才有保障。
风险模型对主要的市场风险(金额、行业、规模、价值、成长)都要求保持中性或基本中性,以对冲的方式消除了大部分的市场风险。风险模型完全以全量化、模型化的方式对组合进行控制,对组合每个类风险的敞口进行计算,一旦敞口超出模型要求,即对组合做相应的调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11