
Python编程中归并排序算法的实现步骤详解
基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止。然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序。
归并操作过程:
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针达到序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
上述说法是理论表述,下面用一个实际例子说明:
例如一个无序数组
[6,2,3,1,7]
首先将这个数组通过递归方式进行分解,直到:
[6],[2],[3],[1],[7]
然后开始合并排序,也是用递归的方式进行:
两个两个合并排序,得到:
[2,6],[1,3],[7]
上一步中,其实也是按照本步骤的方式合并的,只不过由于每个list中一个数,不能完全显示过程。下面则可以完全显示过程。
初始:
a = [2,6] b = [1,3] c = []
第1步,顺序从a,b中取出一个数字:2,1 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [2,6] b = [3] c = [1]
第2步,继续从a,b中按照顺序取出数字,也就是重复上面步骤,这次是:2,3 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [6] b = [3] c = [1,2]
第3步,再重复前边的步骤,结果是:
a = [6] b = [] c = [1,2,3]
最后一步,将6追加到c中,结果形成了:
a = [] b = [] c = [1,2,3,6]
通过反复应用上面的流程,实现[1,2,3,6]与[7]的合并
最终得到排序结果
[1,2,3,6,7]
本文列举了三种python的实现方法:
方法1:将前面讲述的过程翻译过来了,略先拙笨
#! /usr/bin/env python
#coding:utf-8
def merge_sort(seq):
if len(seq) ==1:
return seq
else:
middle = len(seq)/2
left = merge_sort(seq[:middle])
right = merge_sort(seq[middle:])
i = 0 #left 计数
j = 0 #right 计数
k = 0 #总计数
while i < len(left) and j < len(right):
if left[i] < right [j]:
seq[k] = left[i]
i +=1
k +=1
else:
seq[k] = right[j]
j +=1
k +=1
remain = left if i<j else right
r = i if remain ==left else j
while r<len(remain):
seq[k] = remain[r]
r +=1
k +=1
return seq
方法2:在按照顺序取数值方面,应用了list.pop()方法,代码更紧凑简洁
#! /usr/bin/env python
#coding:utf-8
def merge_sort(lst): #此方法来自维基百科
if len(lst) <= 1:
return lst
def merge(left, right):
merged = []
while left and right:
merged.append(left.pop(0) if left[0] <= right[0] else right.pop(0))
while left:
merged.append(left.pop(0))
while right:
merged.append(right.pop(0))
return merged
middle = int(len(lst) / 2)
left = merge_sort(lst[:middle])
right = merge_sort(lst[middle:])
return merge(left, right)
方法3:原来在python的模块heapq中就提供了归并排序的方法,只要将分解后的结果导入该方法即可。
#! /usr/bin/env python
#coding:utf-8
from heapq import merge
def merge_sort(seq):
if len(seq) <= 1:
return m
else:
middle = len(seq)/2
left = merge_sort(seq[:middle])
right = merge_sort(seq[middle:])
return list(merge(left, right)) #heapq.merge()
if __name__=="__main__":
seq = [1,3,6,2,4]
print merge_sort(seq)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10