
Python实现的数据结构与算法之链表详解
本文实例讲述了Python实现的数据结构与算法之链表。分享给大家供大家参考。具体分析如下:
一、概述
链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接。
根据结构的不同,链表可以分为单向链表、单向循环链表、双向链表、双向循环链表等。其中,单向链表和单向循环链表的结构如下图所示:
二、ADT
这里只考虑单向循环链表ADT,其他类型的链表ADT大同小异。单向循环链表ADT(抽象数据类型)一般提供以下接口:
① SinCycLinkedlist() 创建单向循环链表
② add(item) 向链表中插入数据项
③ remove(item) 删除链表中的数据项
④ search(item) 在链表中查找数据项是否存在
⑤ empty() 判断链表是否为空
⑥ size() 返回链表中数据项的个数
单向循环链表操作的示意图如下:
三、Python实现
Python的内建类型list底层是由C数组实现的,list在功能上更接近C++的vector(因为可以动态调整数组大小)。我们都知道,数组是连续列表,链表是链接列表,二者在概念和结构上完全不同,因此list不能用于实现链表。
在C/C++中,通常采用“指针+结构体”来实现链表;而在Python中,则可以采用“引用+类”来实现链表。在下面的代码中,SinCycLinkedlist类代表单向循环链表,Node类代表链表中的一个节点:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class Node:
def __init__(self, initdata):
self.__data = initdata
self.__next = None
def getData(self):
return self.__data
def getNext(self):
return self.__next
def setData(self, newdata):
self.__data = newdata
def setNext(self, newnext):
self.__next = newnext
class SinCycLinkedlist:
def __init__(self):
self.head = Node(None)
self.head.setNext(self.head)
def add(self, item):
temp = Node(item)
temp.setNext(self.head.getNext())
self.head.setNext(temp)
def remove(self, item):
prev = self.head
while prev.getNext() != self.head:
cur = prev.getNext()
if cur.getData() == item:
prev.setNext(cur.getNext())
prev = prev.getNext()
def search(self, item):
cur = self.head.getNext()
while cur != self.head:
if cur.getData() == item:
return True
cur = cur.getNext()
return False
def empty(self):
return self.head.getNext() == self.head
def size(self):
count = 0
cur = self.head.getNext()
while cur != self.head:
count += 1
cur = cur.getNext()
return count
if __name__ == '__main__':
s = SinCycLinkedlist()
print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))
s.add(19)
s.add(86)
print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))
print('86 is%s in s' % ('' if s.search(86) else ' not',))
print('4 is%s in s' % ('' if s.search(4) else ' not',))
print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))
s.remove(19)
print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))
运行结果:
$ python sincyclinkedlist.py
s.empty() == True, s.size() == 0
s.empty() == False, s.size() == 2
86 is in s
4 is not in s
s.empty() == False, s.size() == 2
s.empty() == False, s.size() == 1
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10