
我们用大数据画了个圈,发现了城市的新边界
“首都北京,行政面积1.64万平方公里。”
“多大?”
“1.64万平方公里。”
“那是多大?”
比起行政面积,也许出行半径更能描述市民日常实际活动范围。滴滴媒体研究院利用滴滴出行平台订单数据对全国主要城市的出行半径进行“测量”,从一个侧面反映城市究竟有“多大”。
毫不意外的,北京的出行半径最大,31.7公里。也就是说,北京90%的出行订单的起点或终点在距离市中心(天安门)31.7公里的范围内,而从天安门开车到东六环,刚好是30公里。中国城市中,出行半径大于30公里的有4个:北京、上海、深圳和佛山。
全国主要城市出行半径排行
注:“出行半径”:若超过90%的出行起点或终点与城市中心的距离在R公里范围内,则定义城市半径为R(单位:公里),即大多数出行活动的起终点都在城市半径R范围内。
工作在北京东四环外传媒产业园的张扬,两年前把房子买在了南六环,每天开车上班单程需要近一个半小时。
上海的姗姗在市中心的一家日企工作,家住长宁区的她每天要乘地铁上下班,单程三站地,加上走路全程需要近40分钟。
一个城市有多大?看看上班族上下班要花的时间。这是衡量“城市有多大”的另一个维度:通勤。
如上所述的出行半径是一个静态的直线距离,它并不能体现出城市形态、城市规划、拥堵状况等因素。而平均通勤距离和时间则可以帮助我们融合更多的路面信息和生活体验,从而更好地感知一个城市到底有多大。
全国主要城市通勤距离&时间
**“通勤距离&通勤时间”:此处是指根据滴滴出行平台上打车出行数据测算的上下班通勤距离和时间,即工作日06:00-10:00和16:00-21:00期间通过滴滴顺风车和专快车来往于住宅小区和商务楼宇的订单的平均距离及时间,数据统计周期为2017年11月。
令人惊讶的是,广东东莞的平均通勤距离和时间分别为17.3公里和48.5分钟,超过了上海、广州、深圳这些一线城市,仅次于北京。早高峰期间,从东莞住宅区发出的订单中很大一部分会进入了深圳、广州、惠州等周边城市。这便不难理解,为何出行半径并不显著的东莞,会在通勤排行上如此高位。
出行半径、通勤距离&时间前十位
东莞北接广州,南连深圳,毗邻香港,是粤港澳大湾区的重要组成部分,据媒体报道,在东莞凤岗停满大量的粤B牌轿车,早高峰期间人流也几乎全部涌向深圳方向,珠三角一体化程度高,城市间连通性也极高,因而,在地域上仅用“行政区域”来描述生活区域便不够准确,这便引出另一个概念,“城市功能地域”。
四大城市功能地域
城市功能地域,是以24小时为周期的城市工作、居住、教育、商业、娱乐、医疗等功能所波及的范围。它或大于,也或小于本来的城市行政区域,由于如今城市群一体化进程不断加快,一个城市的功能区也很可能与相邻城市连成一片。
上图中呈现的功能地域是中国融合程度最高的四大城市群,以区域一为例,也许你生活在东莞,但每日的工作、娱乐范围,完全可能涵盖深圳、广州等城市。由此可见,在一定程度上,城市功能地域要比城市行政区更能准确描述你在这个城市可能的生活范围。
此时,让我们再回头考虑那个初始问题:“这个城市到底有多大?”,我们便有了一些更加贴合日常生活的数据:出行半径、通勤时间、通勤距离,以及城市功能地域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29