京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们用大数据画了个圈,发现了城市的新边界
“首都北京,行政面积1.64万平方公里。”
“多大?”
“1.64万平方公里。”
“那是多大?”
比起行政面积,也许出行半径更能描述市民日常实际活动范围。滴滴媒体研究院利用滴滴出行平台订单数据对全国主要城市的出行半径进行“测量”,从一个侧面反映城市究竟有“多大”。
毫不意外的,北京的出行半径最大,31.7公里。也就是说,北京90%的出行订单的起点或终点在距离市中心(天安门)31.7公里的范围内,而从天安门开车到东六环,刚好是30公里。中国城市中,出行半径大于30公里的有4个:北京、上海、深圳和佛山。
全国主要城市出行半径排行
注:“出行半径”:若超过90%的出行起点或终点与城市中心的距离在R公里范围内,则定义城市半径为R(单位:公里),即大多数出行活动的起终点都在城市半径R范围内。
工作在北京东四环外传媒产业园的张扬,两年前把房子买在了南六环,每天开车上班单程需要近一个半小时。
上海的姗姗在市中心的一家日企工作,家住长宁区的她每天要乘地铁上下班,单程三站地,加上走路全程需要近40分钟。
一个城市有多大?看看上班族上下班要花的时间。这是衡量“城市有多大”的另一个维度:通勤。
如上所述的出行半径是一个静态的直线距离,它并不能体现出城市形态、城市规划、拥堵状况等因素。而平均通勤距离和时间则可以帮助我们融合更多的路面信息和生活体验,从而更好地感知一个城市到底有多大。
全国主要城市通勤距离&时间
**“通勤距离&通勤时间”:此处是指根据滴滴出行平台上打车出行数据测算的上下班通勤距离和时间,即工作日06:00-10:00和16:00-21:00期间通过滴滴顺风车和专快车来往于住宅小区和商务楼宇的订单的平均距离及时间,数据统计周期为2017年11月。
令人惊讶的是,广东东莞的平均通勤距离和时间分别为17.3公里和48.5分钟,超过了上海、广州、深圳这些一线城市,仅次于北京。早高峰期间,从东莞住宅区发出的订单中很大一部分会进入了深圳、广州、惠州等周边城市。这便不难理解,为何出行半径并不显著的东莞,会在通勤排行上如此高位。
出行半径、通勤距离&时间前十位
东莞北接广州,南连深圳,毗邻香港,是粤港澳大湾区的重要组成部分,据媒体报道,在东莞凤岗停满大量的粤B牌轿车,早高峰期间人流也几乎全部涌向深圳方向,珠三角一体化程度高,城市间连通性也极高,因而,在地域上仅用“行政区域”来描述生活区域便不够准确,这便引出另一个概念,“城市功能地域”。
四大城市功能地域
城市功能地域,是以24小时为周期的城市工作、居住、教育、商业、娱乐、医疗等功能所波及的范围。它或大于,也或小于本来的城市行政区域,由于如今城市群一体化进程不断加快,一个城市的功能区也很可能与相邻城市连成一片。
上图中呈现的功能地域是中国融合程度最高的四大城市群,以区域一为例,也许你生活在东莞,但每日的工作、娱乐范围,完全可能涵盖深圳、广州等城市。由此可见,在一定程度上,城市功能地域要比城市行政区更能准确描述你在这个城市可能的生活范围。
此时,让我们再回头考虑那个初始问题:“这个城市到底有多大?”,我们便有了一些更加贴合日常生活的数据:出行半径、通勤时间、通勤距离,以及城市功能地域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31