京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python爬虫学习笔记之正则表达式
正则表达式的使用
想要学习 Python 爬虫 , 首先需要了解一下正则表达式的使用,下面我们就来看看如何使用
. 的使用这个时候的点就相当于一个占位符,可以匹配任意一个字符,什么意思呢?看个例子就知道
import re
content = "helloworld"
b = re.findall('w.',content)
print b`
注意了,我们首先导入了 re,这个时候大家猜一下输出结果是什么?因为 . 相当于一个占位符,所以理所当然的这个时候的输出结果是 wo 。
* 的使用跟上面的 . 不同,* 可以匹配前一个字符任意次数,看个例子
content = "helloworldhelloworld"
b = re.findall('w*',content)
print b
这个时候的输出结果是 ['', '', '', '', '', 'w', '', '', '', '', '', '', '', '', '', 'w', '', '', '', '', ''],可见是一个列表,长度和匹配的字符串一致,遇到要匹配的字符就打印出来。
.* 的使用.* 是一种组合使用,它可以尽可能多的匹配内容,比如下面这个例子
content = "helloworldhelloworldworld"
b = re.findall('he.*ld',content)
print b
它会输出 ['helloworldhelloworldworld'],它为什么不只打印一个 helloworld,为什么全部打印下来了?这就是一种贪心算法,也就是说我要找到最长的那个符合条件的内容。
.*? 的使用与 上面相反,这个符号会找到尽可能短的符合条件的内容,然后放到一个列表中去,如下所示
content = 'xxhelloworldxxxxhelloworldxx'
b = re.findall('xx.*?xx',content)
print b
输出的结果为 ['xxhelloworldxx', 'xxhelloworldxx'],可见,有个 xx 在前面好烦,怎么才能去掉呢?很简单,加个括号即可,括号加在哪?
content = 'xxhelloworldxxxxhelloworldxx'
b = re.findall('xx(.*?)xx',content)
print b
以上我们讨论的都是内容不包含换行符的情况,如果有了换行符结果又会发生什么变化呢?
content = '''xxhelloworld xx'''
b = re.findall('xx(.*?)xx',content)
print b
这个时候的输出结果为一个空列表,那怎么办啊?如果我们写网络爬虫的时候,网页源代码肯定不止是一行啊,如果换一行我们就读不出来了,那就好尴尬了,当然有解决办法~
content = '''xxhelloworld xx'''
b = re.findall('xx(.*?)xx',content,re.S)
print b
这样就可以了,还有一个非常方便的提取数字的技巧,如下所示
content = '''xx123456 xx'''
b = re.findall('(d+)',content,re.S)
print b
在网页源代码中爬取图片链接并下载
这篇文章中只是网络爬虫的第一步,所以讲解的也比较浅,所以现在我们先来利用正则表达式实现一个手动的网络爬虫,什么是手动的呢?就是我们自己把网页源代码复制下来,保存在一个 txt 文件中,然后利用正则表达式去过滤信息,然后去下载。
首先我搜索了一下 Linux 桌面,然后找到了如下一个网页
右击查看网络源代码,按 ctrl+f 搜索 img src 找到中间一部分进行复制,并且粘贴到一个 txt 文件中去,
然后就可以利用我们上述的知识去提取我们想要的信息,源代码如下
import re import requests
f = open('source.txt', 'r')
html = f.read()
f.close()
pattern = '<img src="(.*?)"'
pic_url = re.findall(pattern, html, re.S)
i = 0
for each in pic_url:
print 'Downloading :' + each
pic = requests.get(each)
fp = open('picture\\' + str(i) + '.jpg', 'wb')
fp.write(pic.content)
fp.close()
i = i + 1
首先打开我们保存网络源代码的 txt文件,进行读取,关闭文件流,然后就是利用正则表达式提取图片链接,最后利用requests 中的 get() 方法进行图片下载,注意这个 requests 不是Python 中自带的,我们需要下载指定的文件,然后将其放入到 Python 的Lib 目录下,此处下载,进入网站后,按ctrl+f 搜索关键词 requests 就可以看到如下页面
,可以看出,我们下载的是 .whl 后缀的文件,手动将其改成 .zip 后缀,然后解压,就可以得到两个目录,将名为 requests 的目录复制粘贴到上面讲的目录即可使用。
好了介绍完了,我们去看下运行结果
C:Python27python.exe E:/PythonCode/20160820/Spider.py
Downloading:http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112732422680200576.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112640070563900918.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112547718465744154.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112455366330382227.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112363014254719641.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112270662197888742.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112178310031994750.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112085957910403853.JPG
Process finished with exit code 0
这个时候就下载成功了,到我们的 picture 目录下去查看下载的图片
下载成功了。注意,自己找网页源代码实验的时候,最好不要让链接中带有中文,否则可能会出现乱码,由于我本身学习 Python 也才很短的时间,关于中文乱码问题,应对起来还不是那么得心应手,所以在此也就不再讲解,本文暂时告以段落,有意见或疑问可留言或者私聊我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06