京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学领域的20位杰出女性
很长一段时间,在科学、技术、工程和数学等领域工作的女性都不受重视和欢迎。比如Katherine Johnson和她的同事们,曾在NASA早期的太空计划中做出了卓越的贡献。但是直到两年前,电影《隐藏人物》出现之前,人们还没有听说过她们的名字。
如今STEM领域(STEM指科学Science、技术Technology、工程Engineering、数学Mathematics)仍然是由男性主导的世界,女性要想在该领域立足,每天都要付出巨大的努力。同时在该领域获得成功的女性和男性人数之间还存在巨大的差距。
但这个差距正在减小。Girls Who Code以及Technovation等举措正在改变这个现状。同时许多才华横溢的女性正在数据和技术领域创出自己的一片天地。
对于想进入该领域的女性来说,这些具有代表性的女性是她们的楷模。因为对于每个怀揣梦想的人来说,需要有人来激励他们是很重要的。得知有人经过类似的经历,并最终取得成功无疑是令人感到欣慰的。
因此在本文中列出了20位在人工智能、机器学习、数据科学和大数据方面表现出色的女性。
1. Silvia Chiappa
Google DeepMind的高级研究员。Silvia具有机器学习博士学位,研究方向是贝叶斯推理、图形模型、近似推理、时间序列模型、深度学习和强化学习。她共同撰写了多篇论文,同时也是《贝叶斯时间系列模型》的编辑之一。
2. Jana Eggers
AI公司Nara Logics的CEO。Jana拥有超过25年的从业和领导经验,她曾在美国航空公司、Lycos公司、因纽特公司创新实验室、洛斯阿拉莫斯国家实验室工作。她是演说家、作家、马拉松选手,以及AI领域和创业公司的导师。
3. Nikita Johnson
活动组织公司RE•WORK的的创始人。公司团队人员主要是女性,主要负责组织关于突破性技术、前沿科学和创业精神的活动。在国际发展和城市化背景下,Nikita创立了RE•WORK公司,旨在通过将创新技术与智慧创业结合起来应对全球挑战,塑造更美好的未来。
4. 李飞飞
计算机视觉领域的著名学者。计算机视觉是AI的一个分支,主要致力于教计算机识别图像中的物体。李飞飞是斯坦福大学人工智能实验室的主任,同时担任该大学计算机科学系的副教授。目前,她还担任Google Cloud的AI和机器学习的首席科学家。
5. 李佳
AI和机器学习领域的知名研究者,并且担任Google Cloud AI研发负责人以及Google AI中国中心的总裁。此前,她曾担任Snapchat的母公司Snap的研究主管。
6. Manuela M. Veloso
赫伯特·西蒙大学的教授,卡内基梅隆大学计算机科学学院的机器学习系主任。AI、机器人和机器学习方面的国际专家。她是机器人世界杯大赛协会的联合创始人以及前任总裁,同时在2014年前一直担任人工智能发展协会的主席。
7. Cynthia Breazeal
Jibo公司的创始人和首席科学家。Jibo公司是一家专门从事研发社交型机器人的公司,同时也是社交型机器人和人机交互领域的先驱。Cynthia的研究方向是研发个人机器人的原理、技术和技术。让机器人具有社交智能,并且可以以人为中心,与人进行交互和沟通。她曾担任麻省理工学院媒体艺术与科学系副教授,在那里她创立并指导了媒体实验室的个人机器人小组。
8. Daphne Koller
AI领域的权威科学家。她发起并引导在线教育平台Coursera,该平台向普通大众提供顶尖大学和组织的在线课程。她曾担任Calico Labs的首席计算主任。
9. Rana el Kaliouby
情感AI领域的先驱。作为创业公司Affectiva的联合创始人,她发明了情感识别技术,该公司利用人工智能技术将技术人性化。在创立Affectiva之前,Rana是麻省理工学院媒体实验室的研究科学家,她在那里率先应用人脸编码,用于心理健康、自闭症等研究领域。
10. Carol Reiley
企业家,机器人学家。Carol是AI自动驾驶汽车创业公司drive.ai的联合创始人及总裁。她是约翰霍普金斯大学的一名学术研究人员,此前还创立了Tinkerbelle实验室。她还出版了一本关于成长型思维模式的儿童书籍《Making a Splash》。
11. Karen Matthys
斯坦福大学计算与数学工程学院外部合作伙伴的执行主任,她与对计算数学、数据科学和可视化、机器学习和高性能计算感兴趣的公司和实验室建立了合作关系。自2001年以来,Karen一直担任营销和商业战略咨询公司Indigo Partners的主管。
12. JillDyché
从事业务与IT的结合方面的写作已有二十多年。她是SAS Best Practices的副总裁,负责数据治理、商业智能、主数据管理、CRM和大数据领域的客户战略和市场分析。她还发表了多本数据方面广受欢迎的书籍。
13. Megan Price
人权数据分析小组的执行主任,该组织通过统计分析的方法提供证据,制定决策。她具有生物统计学博士学位,为危地马拉、哥伦比亚和叙利亚等多个国家的项目提供人权数据统计分析策略和方法。
14. Neha Narkhede
Confluent的联合创始人以及工程主管。之前她是LinkedIn的工程师,同时是开源软件平台Apache Kafka的早期工程师。
15. Carlie Idoine
Gartner公司的商业分析和数据科学研究主管。她在商业分析和数据科学领域拥有超过25年的经验,她将商业和行业知识进行组合,将新技术和有效的业务解决方案结合在一起。
16. Claudia Imhoff
分析型CRM、商业智能和架构的国际知名专家。Claudia是Intelligent Solutions公司的创始人兼总裁,该公司是CRM、商业智能技术咨询公司。她还是Boulder BI Brain Trust的创始人,这是一个由独立顾问和分析师组成的联盟。
17. Judith Hurwitz
Hurwitz&Associates公司的总裁兼CEO,该公司专注于大数据、云计算、服务管理、软件开发、计算管理和安全。她被认为是预测技术创新和应用的先驱,并出版了8本书,其中包括《For Dummies》系列。
18. Jen Stirrup
著名商业智能和数据可视化专家,作者,数据战略家和社区倡导者。Jen最近成为微软的区域总监,同时也是SQL Server最有价值专家,PASS的理事长,以及Data Relish公司的创始人。
19. Jen Underwood
Impact Analytix公司的创始人,该公司是一家集成产品研究、咨询和技术营销的组织。她是一名分析行业专家,在开发数据仓库、报告、可视化和高级分析解决方案方面拥有超过20年的经验。
20. Joanna Schloss
戴尔卓越中心的专家。她擅长数据和信息管理,推动产品营销策略和战略,担任Datameer的产品营销总监。凭借多年的创业经验,Joanna已成功推出了众多产品,从以业务为中心的分析应用程序到数据仓库工具(例如Business Objects Data Services)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24