京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的大未来及价值所在
大数据作为一个尚未完全普及的概念,其实已经贯穿在每个人日常生活的方方面面。而随着科技的进步,大数据也在逐渐从数据本身向着数据之间所蕴含的更丰富的前景发展。

全球大数据现状
大数据(big data),或称海量数据,是由数量巨大、结构复杂、类型众多数据构成的数据集合,其所涉及的数据量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理的目的。大数据是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。
大数据并非一个新出现的概念。1980年,著名未来学家阿尔文·托夫勒在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。不过,大约从2009年开始,“大数据”才成为互联网信息技术行业的流行词汇。美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。同时,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。IDC2012年发布的数字宇宙研究报告(Digital
Universe)显示,接下来的8年中,我们所产生的数据量将超过40
ZB(Zettabyte,即十万亿亿字节,1ZB=230TB),相当于地球上每个人产生5200GB的数据。
我们正处于一个数据爆炸式增长的时代
大数据本身只是复杂而几乎无序的数据,而其背后的关联性,才是大数据巨大的价值所在。目前众多大数据研究的重中之重,就是从海量的数据中提取相关内容,形成有意义、有价值的讯息。这个过程基本可以分为三个阶段。
数据即信息阶段。在这个阶段中,数据本身就是信息的所在。比如网络用户的身份信息、天气信息等。这些信息本身具有价值,在特定领域中能够直接应用,因此在大数据尚未崛起时就已经受到很多关注。然而随着当前来自不同渠道的大量数据表面相关性的降低,数据本身所提供的价值越来越具有局限性。因此这一阶段已经逐渐稳定在一些特定行业中。
数据蕴含信息阶段。在发现数据信息本身的局限性后,人们开始越来越多地研究数据内部的相关性,亦即数据间所蕴含的信息。随着移动互联网和社交媒体的普及,数据相关性正在逐渐取代因果关系,成为连接互联网数据的最重要因素。新闻聚合服务Techmeme的编辑发表文章称,网络已经进入了“相关性时代”。例如,电商可以通过用户的网页浏览记录、所在区域和性别年龄等相关信息,推测出用户的购物喜好,从而进行针对性的精准广告投放等。
孤立数据之间的相关性才是大数据的价值所在
纽约时报博客作者和统计学家Nate Silver凭借自己建立的数学模型,通过对大量数据的分析和统计,在2008年美国大选中曾准确预测了49个州的选举结果,而2012年的美国大选则准确预测了全部50个州的选举结果,在美国乃至全世界激起了对大数据及其相关性统计的追捧。目前大数据应用很多就处于这个阶段,如facebook和谷歌同样基于数据相关性分析推出的“社交图谱”和“知识图谱”,并将其应用于自身的产品中。
数据预测信息阶段。随着技术发展和大数据分析的不断深入,会有越来越多的数据进入庞大的数据库中,供系统进行更加精确分析和决策。比如,可穿戴设备提供了更多用户的身体状态数据,车联网、物联网不断记录着用户的行为倾向性数据,庞大的社交信息承载着新闻发展的趋势……而这些信息无一不是大数据的组成部分。
而随着计算能力的增强,一旦多种大数据之间记录、读取和分析的隔阂被打通,可供计算和决策的数据量就会显著增加,由此而来的更加智能化的网络将具有更加针对性的服务,甚至能够预测用户的行为并提前作出响应。未来用户也许会拥有随着情绪变化色彩的服装、根据爱好自动切换的电视节目、走到旁边自动开锁的汽车,以及更多无法想象的智能化应用,实现智能家居、智能城市。而这一切,都得益于不断增长、成熟的大数据分析处理。事实上,在这种情况下,每个用户就成为了数据本身。
这三个阶段,并没有明确的界限和区别,而是一个不断演进的过程。大数据随着人的发展而不断积累,也随着科技的发展不断被更有效地利用,成为这个时代最具价值的一笔财富。当然,当前的科技还远远没有达到实现第三阶段的水平:数据的存储、计算能力,网络的吞吐量,各个数据源之间的互联互通等等都是亟待解决的问题,而大数据所带来的产业结构调整、用户隐私问题甚至人们生活方式的变化,也都需要更多时间去研究和摸索。不过这些并不能掩盖大数据蕴含的巨大潜力,相信随着时间发展,大数据业务能够带来更多令人惊喜的创新和改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07