京公网安备 11010802034615号
经营许可证编号:京B2-20210330
TED演讲-数据科学家最重要的技能是什么
对于数据科学家来说,最重要的技能究竟是什么呢?在本期的TEDx演讲中,你一定会找到相应的答案。
主讲人
Alto Data Analytics的总经理Jose Miguel Cansado曾在IMB Watson和 Alcatel-Lucent工作,曾担任亚太地区媒体和移动通信负责人。Jose是一名通讯工程师,拥有欧洲工商管理学院的营销硕士学位,以及西班牙企业商学院的MBA学位。
中英双字视频如下:
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
我希望你们闭上眼睛,想象一下数据科学家的形象。你们想到了什么?
当人们想起数据科学家,人们常常会想到一个穿着实验服的人,在进行人工智能、应用算法、分析数据,为行业或商业的用途提供分析见解。
但在现实中,数据科学家需要掌握大量的技术,需要掌握各个不同领域的专业知识,需要具有企业家的精神,以及达芬奇般的想象力。
在2006年,谷歌的前CEO Eric Schmidt曾说,"自人类诞生到2003年以来,仅产生了5艾字节的数据,如今我们每两天就能产生同样大小的数据"。
这意味着大量的数据。但好消息是,如今的科技水平能够让我们处理、分析这大量的信息。
得益于机器学习中人工智能的帮助,大数据被用于许多方面。比如更好地分析用户;进行个性化推荐;改善医疗和诊断水平;预测政治革命;防止犯罪;甚至艺术创作。显而易见,大数据提高了人类的潜力。
在Alto Data Analytics,我们帮助大型组织从各种数据中得出可行的方案,做出改变。
政治争论分析
在英国退出欧盟的几个月后,出现了广泛的社会争论。我们可以对当中的数据进行分析,从而理解并标注社会争论发生在哪儿;产生了哪些社区;投反对票的人群是如何进行反对的;媒体是如何保持中立的;技术社区里人们是如何讨论当中的经济、社会和政治影响的。
我们可以看到许多新兴社区的诞生。比如苏格兰人更倾向于不脱离欧盟,美国共和党人更倾向英国脱离欧盟。
我们还可以分析和弄清哪些人在这场争论中最具有影响力以及媒体的立场,甚至预测哪些想法会取胜。
电影分析
对于电影来说,比起分析家和评论家,我们可以分析更多的内容。
小李子主演的纪录片《洪水泛滥之前》,该影片的目的在于提高大众对气候变化的认知。我们捕捉了当中全部的物影摄影(photograms),从而进行分析当中有多少出现了小李子,多少出现了决策人,理解气候的哪些方面改变了,从而带来讨论。或者还能明白哪些画面被分享在社交媒体上。
流行趋势分析
我们还可以预测流行趋势。
通过分析人们Instagram上分享并附有标签"今日穿搭"的照片。通过收集成百上千的照片,我们可以分析人们分享这些照片所带来的潜在影响。因为我们可以看到哪些人进行了互动,从而发现那些影响力的人分享的照片中存在哪些穿搭模式。
思维模式转换
这是思考模式的转化。
之前我们大多根据直觉和猜测进行决策,而如今我们根据数据。我们可以转变为数据驱动的决策。
管理学大师Peter Drucker曾说,"你不能管理你不能测量的事物"。如今没有借口可找,你可以测量也可以管理。
如果没有人工智能、机器学习以及所有大数据科技的帮助,我们将无法掌控如今的数据变革。但话又说回来,从数据中得到见解的最重要的因素,也就是让数据科学家无可取代的因素,即人的因素。
关键因素: 好奇心
将数据转化为分析见解的关键在于,我们人类能做而机器不能做的事,即好奇心。
我们都用谷歌搜索,谷歌上有数以亿计的的数据点,但是你的好奇心决定了你是否去学习、去搜索,以及你是否会去过滤和如何发现哪些信息是无关的。
还有同理心。
同理心是与他人联系,以及理解他人需要什么的关键。Henry Ford(美国汽车工程师与企业家,福特汽车公司创始人)曾说"如果我去问人们需要什么,他们会说需要更快的马力”。
同时想象力也是必不可少的盟友。
还有创造力。创造力是进行创新,并得出方案解决问题的关键。
沟通力是说服和影响他人的关键,从而传播理念而带来改变。
领导力是凝聚起他人采取行动的关键所在。
这些因素当中的关键是好奇心。
因为对情感的好奇会驱动同理心;对想法的好奇会驱动想象力;对解决方案的好奇会驱动创造力;对影响力的好奇会心驱动沟通交流;对结果的好奇最终会驱动领导力。
数据科学家最重要的技能是,对数据问适当的问题。
数据科学家的好奇心会引出适当的问题,从而理解人们面对的问题,想象可能的情况,创建明确的方案,用合适的方式传达信息和见解,并让其可行。
这些关键的因素让数据转换为有价值的内容,这一系列的技能是人工智能还不能媲美的。这是技术与人文艺术的交叉点,当中会出现奇迹。
如果说14到17世纪的文艺复兴是让人类从中世纪转变为现代的文化力量,那么大数据复兴已经在通过数据的力量,揭开各种可能,从而推动人类前进。这取决于我们想让数据和机器为我们做什么。
记住,手上有工具的愚者还是愚者。
大数据并不仅是关于技术,大数据需要智者,大数据需要具有好奇心的艺术家来做出改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28