
Python的组合模式与责任链模式编程示例
这篇文章主要介绍了Python的组合模式与责任链模式编程示例,组合模式与责任链模式都属于Python的设计模式,需要的朋友可以参考下
组合模式
我们把Composite模式看成一个复杂的属性结构,其实基本有三种角色:树干(定义一些操作树叶leaf的操作),树枝(树干上有很多树枝)和树叶(树干想要具体操作的对象) ,Composite模式帮我们实现:即它们在充当对象的时候,还是其他对象的容易,从而提供一致性
python的例子
class Trunk(object):
'''树干'''
def __str__(self):
pass
def subtree(self):
pass
class Composite(Trunk):
def __init__(self, left=None, right=None, length=None):
self.left=left
self.right=right
self.length=length
def __str__(self):
# 这个结果是在调用subtree()的时候返回
if self.length:
return "(" + self.left.__str__() + ", " + self.right.__str__() + ")" + ": " + str(self.length)
else:
return "(" + self.left.__str__() + ", " + self.right.__str__() + ")"
# 这里其实就是一个技巧,通过这个函数返回下一级的对象,也就是它既是对象还可以是对象的容器
def subtree(self):
return Composite(self.left, self.right)
class Leaf(Trunk):
'''叶子类,它没办法继续延伸了'''
def __init__(self, name, length=None):
self.name = name
self.length=length
self.left = None
self.right = None
def __str__(self):
return self.name + ": " + str(self.length)
def subtree(self):
return Leaf(self.name, self.length)
if __name__ == "__main__":
# 只有叶子那么就直接返回__str__的拼装结果
t1 = Leaf('A', 0.71399)
print t1
# 有个2个叶子的组合,返回的是2个叶子的对象的组合
t2 = Composite(Leaf('B', -0.00804),
Leaf('C', 0.07470))
print t2
# 这个是嵌套的叶子的组合,树干上面有树枝,树枝上面有叶子
t3 = Composite(Leaf('A', 0.71399),
Composite(Leaf('B', -0.00804),
Leaf('C', 0.07470), 0.1533), 0.0666)
print t3
# 直接通过左右节点找到对应的叶子对象了
t4 = t3.right.right.subtree()
print t4
# t3的左树其实就是叶子对象了
t5 = t3.left.subtree()
print t5
责任链模式
比如我们还在读书的时候,考试的分数都是几个档次,比如90-100分,80-90分,好吧我想做一个根据分数打印你的学习成绩的反馈, 比如90-100就是A+,80-90就是A,70-80就是B+… 当然你可以用很多种方法实现,我这里就来实现一个Chain模式:用一系列的类来响应, 但只有遇到适合处理它的类才会处理,类似与case和switch的作用
python的例子
class BaseHandler:
# 它起到了链的作用
def successor(self, successor):
self.successor = successor
class ScoreHandler1(BaseHandler):
def handle(self, request):
if request > 90 and request <= 100:
return "A+"
else:
# 否则传给下一个链,下同,但是我是要return回结果的
return self.successor.handle(request)
class ScoreHandler2(BaseHandler):
def handle(self, request):
if request > 80 and request <= 90:
return "A"
else:
return self.successor.handle(request)
class ScoreHandler3(BaseHandler):
def handle(self, request):
if request > 70 and request <= 80:
return "B+"
else:
return "unsatisfactory result"
class Client:
def __init__(self):
h1 = ScoreHandler1()
h2 = ScoreHandler2()
h3 = ScoreHandler3()
# 注意这个顺序,h3包含一个类似于default结果的东西,是要放在最后的,其他的顺序是无所谓的,比如h1和h2
h1.successor(h2)
h2.successor(h3)
requests = {'zhangsan': 78,
'lisi': 98,
'wangwu': 82,
'zhaoliu': 60}
for name, score in requests.iteritems():
print '{} is {}'.format(name, h1.handle(score))
if __name__== "__main__":
client = Client()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15