
有效管理大数据的主要策略
如何管理数据,并将数据从一点转移到另一点,将是美国政府面临的一大挑战。Szykman还提到了商务部在大数据中遇到的其他一些重要问题,主要为以下五个方面:
数据的真实性
大数据的重要性不仅是在于数据所生成的记录,更大的价值在于根据这些数据得出科研结果的“复制能力”。而从学术层面来看,这正是你证实所做工作价值的时候:其他人也可以对结果进行复制。另一方面,如果你丢失了得出科研结果的那些数据,这会降低结果的合理性。
数据工程师
研究领域的很多科学家正在研究大数据的精密使用,比如在预防医学、药品设计和胎儿检查领域如何开发基因数据。但Szykman担心的是,真正了都大数据技术构架的人太少。我们需要好好想想大数据及我们如何利用它,特别是在一些特殊领域。无论是政府的直接应用还是由政府出资科研,政府都在推动大数据这一前沿技术的发展。
大思路,早规划
在向开放数据转移的过程中,尽早搞清楚系统生命周期的要求显得越来越重要。在过去,没有做的一件事就是尽早研究开放数据在生命周期上的要求。数据模型、分享和信息的情况会越来越普遍,而系统性的战略会越来越多。在生命周期的早期,当我们成功安装新的系统或应用程序后,就应该尽早考虑该问题。
保密性vs.完整性
对于那些有科研基础的机构而言,大数据安全不仅仅是一个保密问题。数据的长期完整性也是企业更大的担忧。这是IT界一直为之努力的议题。有时候,我们过分关注结果而忽视了安全。人们有时会问:‘我们最终都要和公众分享这一数据,那安全有什么重要呢?’
这一问题的最佳答案来自科研机构,如NOAA。他们收集的基准数据正巧是美国气候变化政策备受争议所在。不管这些政策的政治倾向性如何,它们都对经济有重大影响。如果我们放弃了这些长期气候记录数据的安全性,那将造成严重后果。我们的确得好好想想大数据的问题。
制定基准线
由于很少存在类似的应用程序,难以获取相关信息或进行比照,因此有时候很难评定大数据以及其他高科技项目的开支和风险。出台开支和风险的基线,对大数据和数据中心来说都是一大挑战,因为还没有相关标准。操作一些简单事情有时候充满挑战,如计算数据中心的能耗。大数据基线不仅在基础设施层面,还包括数据包,都需要对未来资源进行更优规划。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11