京公网安备 11010802034615号
经营许可证编号:京B2-20210330
线上数据才是大数据
今日关于“大数据”的讨论达到了一个高峰,数据就是未来已经不置可否地成为了互联网企业的未来新战略发展的中心。什么是大数据,大数据是如何产生价值的,大数据是无所不能的吗,应用边界在哪里?这些问题,似乎人人都有一个模糊的概念,但始终没有一个统一的答案。

说到大数据,首当其冲的应该是已经围绕数据海洋中耕耘已久并衍生出金融借贷业务的阿里系。马云将集团下的阿里金融与支付宝两项核心业务合并成立阿里小微金融,并将之前呼声最高的接班人彭蕾安排到阿里小微金融掌舵,马云对未来数据战场的重视可见一斑。作为筹备中的阿里小微金融服务集团数据平台,负责人冯春培也对数据有着独到的见解,他向作者表示目前国内对于大数据的讨论更偏重技术方向,即“如何沉淀数据”,对于数据的应用则思考较少。数据如何产生价值?这需要要从大数据的本质说起。
线上数据才是大数据
要搞清楚什么是大数据,首先你要知道什么样的数据才是有用的。按照冯春培的理解,任何行为本身都会产生数据,但只有线上数据有可能被沉淀和利用。“比如不通过淘宝,原本人们的交易行为在线下也是产生数据的,只不过这种交易行为是私密的,除了买卖双方,其他人是不知道我的交易行为的,同时交易双方也是匿名的,从数据的性质上来说无法沉淀,从来源上来说也没有一个方法能有效地收集。”
大数据是什么?冯春培的理解似乎更贴近本质:“拥有数据的本质,是你对这个世界,你对这些人,你对这些企业,你对这个时代,有了一个更全面而清楚的认知,你能理解这些人的需求,你能理解这个世界的任何的变化。”
你可以这么理解,如果你是阿里系的深度用户(比如淘宝卖家),他们掌握了你足够多的数据,对你的信用评估也会更加全面,这个数据不仅可以在金融领域中起作用,比如帮助你在阿里小贷更方便的贷款,在生活中也可以反映你的信用状况,“比如相亲
,你怎么证明你的收入?你拿出支付宝的账单,女孩子一看一年花了 100
万,你说你的信用良好,每个月信用卡还的都很及时,比你说破嘴皮有用多了吧?”
数据就是生产资料
如果数据仅仅是作为辅助参考信息,也必要投入如此多的精力。从生产要素来说,数据到底是什么角色?冯春培的定义是“生产资料”。“我们部门的名字是‘商业智能部’,数据更多的像是一种业务的辅助决策,作为一个“参谋”的角色,现在我们要逐步的让这个数据融入到我们的业务和产品这个流程里面去,数据和业务就像两个齿轮,能扣在一起转。当我们对数据的挖掘和理解越来越强,最终数据不仅可以产生价值,还可以直接催生产品,比如阿里金融的一些数据,我们把它定义为生产资料。”
这就是阿里系未来要做的事情,把数据变成生产资料。与传统的生产资料不同的是,数据是可以无限次使用的,并且是越使用越丰富的。
近期阿里巴巴在移动互联网市场频频出手,未来也许有可能将数据进行融合,用户的各种信息得以呈现在一个全景图里面,即使在完全陌生的城市,借助这种服务,你也能知道附近哪家店支持支付宝付款,微博上哪个网友刚刚在附近的咖啡店歇脚。
数据分析是“大海捞针”
与大多数互联网产品存在的问题相同,互联网产生的数据是有可能被伪造的,同时也是无序的、碎片化的。
对于这一点,冯春培也毫不讳言,“短期的伪造数据当然是有可能的,用特定的维度去伪造数据也是完全可能的,但是因为我们的业务是基于长期数据进行跟踪分析的,采纳的维度也更广,伪造数据的成本和难度会越来越大。按照我们现在的信用模型,伪造数据的收益是不太可能覆盖成本的,那么我们可以基本判断,数据的真实性是有保障的。”
是否存在冗余数据?冯春培的答案是“NO”,“即使现在的场景需求,或者我现在的眼光来看这个数据我觉得没有用,但不意味着将来这个数据也是没用的。”这同时也造成了一个问题——存储的数据量会越来越大,但是在特定的应用场景中只需要用到一小部分数据,“确实,我们现在每一次的数据分析都是在‘大海捞针’”。
数据加工流水线
数据是怎么从每一次交易行为,最终变成一个个数据模型和最终产品的?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12