
用Python代码来绘制彭罗斯点阵的教程
这里是显示彭罗斯点阵的Python的脚本。是的,这是可以运行的有效Phython代码。
译注:彭罗斯点阵,物理学术语。上世纪70年代英国数学家彭罗斯第一次提出了这个概念,称为彭罗斯点阵(Pen-rose tiles)。
_ =\
"""if!
1:"e,V=100
0,(0j-1)**-.2;
v,S=.5/ V.real,
[(0,0,4 *e,4*e*
V)];w=1 -v"def!
E(T,A, B,C):P
,Q,R=B*w+ A*v,B*w+C
*v,A*w+B*v;retur n[(1,Q,C,A),(1,P
,Q,B),(0,Q,P,A)]*T+[(0,C ,R,B),(1,R,C,A)]*(1-T)"f
or!i!in!_[:11]:S =sum([E (*x)for !x!in!S],[])"imp
ort!cair o!as!O; s=O.Ima geSurfac
e(1,e,e) ;c=O.Con text(s); M,L,G=c.
move_to ,c.line_to,c.s et_sour
ce_rgb a"def!z(f,a) :f(-a.
imag,a. real-e-e)"for!T,A,B,C!in[i !for!i!
in!S!if!i[""";exec(reduce(lambda x,i:x.replace(chr
(i),"\n "[34-i:]), range( 35),_+"""0]]:z(M,A
);z(L,B);z (L,C); c.close_pa
th()"G (.4,.3 ,1);c.
paint( );G(.7 ,.7,1)
;c.fil l()"fo r!i!in
!range (9):"! g=1-i/
8;d=i/ 4*g;G(d,d,d, 1-g*.8
)"!def !y(f,a):z(f,a+(1+2j)*( 1j**(i
/2.))*g)"!for!T,A,B,C!in!S:y(M,C);y(L,A);y(M
,A);y(L,B)"!c.st roke()"s.write_t
o_png('pen rose.png')
""" ))
当这个程序运行时,它输出了一个1000×1000的图像文件,包含大约2212个由3D立体效应渲染的彭罗斯点阵。这里是该图像的一部分(点击放大)。
运行该脚本需要Pycairo。它只在Python它是标准的Python脚本,但我努力想把它变得更简洁,于是我又从中删减了一些。
编注:Pycairo是一组Python版本的Cario图形库。
彭罗斯点阵很酷,因为它们非周期性地覆盖了整个平面——图片的转换副本与原型从来不会一致。它们是由Roger Penrose先生通过将五边形的平面平铺在一起的一系列尝试而发明的。
与C或Perl相比,Python并不是让人迷惑的编程语言。这种比较似乎也从未发生,而且在网上也没有多少让人费解的Python的例子:你可以在官方的Python常见问题中或各种网页如这里和这里找到一些例子。在2011年的PyCon对此还有专题讨论。
我相信输出一个高分辨率的图像是第一个让人费解的Python程序。如果你知道其它的例子,可以在评论中告诉我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29