
用Python代码来绘制彭罗斯点阵的教程
这里是显示彭罗斯点阵的Python的脚本。是的,这是可以运行的有效Phython代码。
译注:彭罗斯点阵,物理学术语。上世纪70年代英国数学家彭罗斯第一次提出了这个概念,称为彭罗斯点阵(Pen-rose tiles)。
_ =\
"""if!
1:"e,V=100
0,(0j-1)**-.2;
v,S=.5/ V.real,
[(0,0,4 *e,4*e*
V)];w=1 -v"def!
E(T,A, B,C):P
,Q,R=B*w+ A*v,B*w+C
*v,A*w+B*v;retur n[(1,Q,C,A),(1,P
,Q,B),(0,Q,P,A)]*T+[(0,C ,R,B),(1,R,C,A)]*(1-T)"f
or!i!in!_[:11]:S =sum([E (*x)for !x!in!S],[])"imp
ort!cair o!as!O; s=O.Ima geSurfac
e(1,e,e) ;c=O.Con text(s); M,L,G=c.
move_to ,c.line_to,c.s et_sour
ce_rgb a"def!z(f,a) :f(-a.
imag,a. real-e-e)"for!T,A,B,C!in[i !for!i!
in!S!if!i[""";exec(reduce(lambda x,i:x.replace(chr
(i),"\n "[34-i:]), range( 35),_+"""0]]:z(M,A
);z(L,B);z (L,C); c.close_pa
th()"G (.4,.3 ,1);c.
paint( );G(.7 ,.7,1)
;c.fil l()"fo r!i!in
!range (9):"! g=1-i/
8;d=i/ 4*g;G(d,d,d, 1-g*.8
)"!def !y(f,a):z(f,a+(1+2j)*( 1j**(i
/2.))*g)"!for!T,A,B,C!in!S:y(M,C);y(L,A);y(M
,A);y(L,B)"!c.st roke()"s.write_t
o_png('pen rose.png')
""" ))
当这个程序运行时,它输出了一个1000×1000的图像文件,包含大约2212个由3D立体效应渲染的彭罗斯点阵。这里是该图像的一部分(点击放大)。
运行该脚本需要Pycairo。它只在Python它是标准的Python脚本,但我努力想把它变得更简洁,于是我又从中删减了一些。
编注:Pycairo是一组Python版本的Cario图形库。
彭罗斯点阵很酷,因为它们非周期性地覆盖了整个平面——图片的转换副本与原型从来不会一致。它们是由Roger Penrose先生通过将五边形的平面平铺在一起的一系列尝试而发明的。
与C或Perl相比,Python并不是让人迷惑的编程语言。这种比较似乎也从未发生,而且在网上也没有多少让人费解的Python的例子:你可以在官方的Python常见问题中或各种网页如这里和这里找到一些例子。在2011年的PyCon对此还有专题讨论。
我相信输出一个高分辨率的图像是第一个让人费解的Python程序。如果你知道其它的例子,可以在评论中告诉我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22