京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的套路
数据其实是非常的客观的,但是数据本身并不会告诉你多少有价值的东西,其中蕴涵的内容才是我们应该去发掘的。
我们通过数据分析将现实中的问题简化成数字问题,从而得到解决问题的建议。
需要注意的是,数据分析只是工具,不是目的。我们进行数据分析是为了让分析结果能反映现阶段的情况,并对下一步计划产生指导意义,所以千万不要为了分析而分析。
1、明确目标
一切分析的基础都是需要明确目标,在此之前,不要开始任何分析,因为那很可能是无用功。
一般来说,目的主要有以下三种。
(1)分析现状,反映目前的状况,并且帮助我们制定下一步计划。
(2)分析问题,针对出现的问题,分析其中的原因并找到解决办法。
(3)分析变化,当产品的情况出现变化时反映变化的情况,并找出原因,有针对性的进行下一步行动。
2、明确分析范围
因为数据的量和维度都非常的多,我们在明确目标后,就必须选定我们分析的范围,明确的分析范围能避免分析报告内容太多,而且不深入。
需要注意的是,确定范围后我们就需要进行数据采集了,但是具体要采集什么样的数据,不是我们平常的“自然语言”描述就可以实现的,需要抽象成“数学语言”表达出来。
3、数据采集
确定了范围后,我们就可以采集数据了,需要采集哪些数据也是有讲究的,它也是需要我们用“数学语言”来表达的。一般来说,需要采集的数据分为以下3类,这是最基础的:名称、数量和转化率。
(1)名称:某些数据的结果不是以数字形式展现的,比如某某功能。
(2)数量:这个比较简单,比如:某某功能的点击次数。
(3)转化率:有些数据单独的看,是不能说明问题的,例如:光看一个功能的点击次数,我们不能得出这个功能是否吸引人,是否需要改进,我们还需要看完成这个功能的人数。然后将两个数据相除后得到这个功能的转化率。
以上都是一个分析中最基础的指标,在实际数据分析中,还会有更多更细致的维度。比如:用户点击这个功能后,停留时间,退出的数量,在中途放弃的数量等等。
4、数据清洗
采集数据后,这些数据并不是直接就可以用的。因为可能会有一部分“脏数据”会污染我们的数据,进而影响我们的分析结果。这就需要进行数据清洗,将不符合要的“脏数据”清洗掉。
比如,某个用户一直在点击某个功能,每秒固定点击1次,然后退出,那么这个“用户”很可能是个机器,而不是人。这些数据是不能用的。
一般“脏数据”有以下几个类型。
(1)频率异常:正常用户的使用一个功能的频率一般会保持在一定范围内,不会太频繁。
(2)总数异常:比如某一个用户一个人就拉高了整个数据的水平,让某个功能点击率陡然上升。
(3)行为异常:这个就比较复杂了,对应不同的业务有不同的理解。比如:比如一个购物APP,一个用户的多次的下单,然后退货,这类数据就是应该排除的。
5、数据整理
收集完成后,我们需要对收集到的原始数据进行整理。因为收集出来的数据必然是比较乱的,不能直接拿来分析。整理分析分为汇总和拆分两种。
(1)汇总
有些数据比较杂乱无章,我们要按照某个维度汇总才能进行效果的观察。比如:我们需要观察某个功能上线后用户行为的变化,就可以按照上线前和上线后的用户行为数据进行分类汇总,然后通过两份数据的对比来得到结论。
(2)拆分
有些原始数据并不足够细致,需要我们依据数据的关系进行数据拆分。例如,一个功能的入口可能有多个,我们就需要确认每个入口的量,甚至完成整个功能的量,这些数据会让我们更加了解我们的用户行为。
6、数据对比
整理完数据后,我们要进行数据对比。这也是数据分析中非常重要的步骤,因为数据分析的结果绝大多数都来自于对数据的对比。比如:一个功能改进前和改进后的转化率,肯定要经过对比才能知道我们的改进是不是有效的,有效多少。通常对比方法有以下几种。
(1)时间对比。通过时间节点前后进行对比数据。例如:某个营销活动,促进注册、活跃等,我们就可以得出这个营销活动能够带动日活的结论。
(2)空间对比。在我们生活的世界中,因为人们所存在的空间不同,会有不同的行为。比如:通过数据分析,我们会发现,东北的羽绒服效率比海南高,于是我们就可以判断羽绒服在东北更加畅销。
(3)人群属性对比。在用户画像中也提高过。不同的年龄层对于不同事物的看法不同,会导致某个功能在不同人群中的差异性。
依据分析目的灵活地选定对比范围,能让我们从数据中挖掘到我们想要的东西。
7、原因探寻
数据,通过对比呈现出来,能够反映一定的现象,但是造成这些现象的原因还需要我们来寻找。
原因的分析方法有很多,可以正推导、反推导。我们可以结果,那假设原因,再去求证。或者通过某个功能的整个流程进行梳理和复盘,结合数据来分析每一步发生这种情况的原因。
或者通过数据来复盘某一个活动,来分析活动输出的这种数据或好的或坏的原因是什么。
8、展现结果
完成上面的7步,我们的数据分析报告也就差不多了,当然我们必须形成一个比较完整的文档来反馈给相关人员。
我们可以把报告分成以下3部分。
(1)数据分析背景:向大家交代分析的背景与原因。
(2)主要结论:给出主要结论,方便不需要了解细节的人阅读,或领导。
(3)具体分析过程:向大家说明分析的步骤并展示具体数据。
这样就完成了一篇还比较靠谱的数据分析报告。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05