
Python在不同目录下导入模块的实现方法
python在不同层级目录import模块的方法
使用python进行程序编写时,经常会调用不同目录下的模块及函数。本篇博客针对常见的模块调用讲解导入模块的方法。
1. 同级目录下的调用
目录结构如下:
– src
|– mod1.py
|– test1.py
若在程序test1.py中导入模块mod1, 则直接使用
2. 调用子
*import mod1*或from mod1 import *;
目录下的模块
目录结构如下:
– src
|– mod1.py
|– lib
| |– mod2.py
|– test1.py
这时,如果想在程序test1.py中导入模块mod2.py ,可以在lib件夹中建立空文件__init__.py文件
新的目录结构如下:
– src
|– mod1.py
|– lib
| |–__init__.py
| |– mod2.py
|– test1.py
然后使用:
from lib.mod2 import *或import lib.mod2.
3. 调用上级目录下的文件
目录结构如下:
– src
|– mod1.py
|– lib
| |– mod2.py
|– sub
| |– test2.py
这里想要实现test2.py调用mod1.py和mod2.py ,做法是我们先跳到src目录下面,直接可以调用mod1,然后在lib上当下建一个空文件__init__.py ,就可以像第二步调用子目录下的模块一样,通过import lib.mod2进行调用了。具体代码如下:
import sys
sys.path.append('C:\\test\\A\\C')
import mod1
import lib.mod2
需要注意的一点是:sys.path添加目录时注意是在windows还是在Linux下,windows下需要‘\\'否则会出错。
补充__init__.py
在python模块的每一个包中,都有一个__init__.py文件(这个文件定义了包的属性和方法)然后是一些模块文件和子目录,假如子目录中也有__init__.py 那么它就是这个包的子包了。当你将一个包作为模块导入(比如从 xml 导入 dom )的时候,实际上导入了它的__init__.py 文件。
一个包是一个带有特殊文件 __init__.py 的目录。__init__.py 文件定义了包的属性和方法。其实它可以什么也不定义;可以只是一个空文件,但是必须存在。如果 __init__.py 不存在,这个目录就仅仅是一个目录,而不是一个包,它就不能被导入或者包含其它的模块和嵌套包。
__init__.py 中还有一个重要的变量,叫做__all__。
如果此时目录如下
– src
|– mod1.py
|– lib
| |– mod2.py
| |– mod3.py
| |– sub
| |– | |– mod3.py
我们有时会使出一招“全部导入”,也就是这样:
from lib import *
这时 import 就会把注册在包__init__.py 文件中 __all__ 列表中的子模块和子包导入到当前作用域中来。比如:
#文件__init__.py
__all__ = ["mod2", "mod3", "sub"]
以上这篇Python在不同目录下导入模块的实现方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19