
大数据与区块链:一对桴鼓相应的搭档
大数据能够对海量信息资产通过高效的处理模式来进行捕捉、管理和处理,而区块链本身作为分布式计算的一种,还有去中心化以及不可篡改等特性,两者之间,似乎天然就有合作的可能性。
大数据虽然能够收集海量数据并进行处理,但却无法保证数据的安全性,而作为虚拟货币底层技术的区块链,在这方面却是天赋凛然,自两者诞生之初,便有着强大的吸引力。
不完美的大数据
在前段时间,百度CEO李彦宏曾经说过,中国用户更倾向于用隐私换取便捷性。更准确来说,应该是中国用户被动甚至是被迫共享自己的隐私来换取便捷性。比如现在许多手机APP,强迫用户必须同意接受一些隐私采集条款,才能够正常使用,若不同意,则完全无法使用。
通常而言,应用软件采集用户数据,通过云计算,将对这些用户的大数据进行分类检索,提取有价值的信息,然后为用户提供便捷性服务。这种行为显然是双赢的,企业采集到了有效的数据,用户也体验到了更好的服务。
但是问题在于,李彦宏的说法是用户自愿用隐私换取便捷性。相信涉及到隐私的时候,没有多少用户是心甘情愿的,并且无论用户的隐私数据是否安全,随意获取这些数据都让人感到不适。联系到最近Facebook用户隐私数据泄露事件,大数据安全依然是严峻的问题。
并且收集到用户隐私数据之后,有可能还会被大数据杀熟,通过数据判断用户为高收入群体,在其购买以及消费产品时,将会比平常更加昂贵,届时由于更加成熟的大数据辨别机制,即使通过分享给好友来确认也无法察觉自己已经被“杀熟”。
其次,收集用户大数据之后,企业可以更加精准的推送相关广告,但是这些数据收集之后,用户完全没有任何受益,广告费用全部都被相关公司赚取,这相当于把用户的东西抢走之后,再加价卖回来,这种情况虽然很普通,但是真的合理吗?
让区块链为大数据加密
区块链则可以利用其自身特性,利用秘钥限制这些应用的访问权限,并且可以溯源追查自己的隐私数据都被用于哪些方面,可以做到用户自身完全掌控自己的数据,让用户更加方便的管理属于自己的权限,推动大数据的进一步增长。
就以上面的广告精准推送来说,用户可以通过区块链,完全把控自己的隐私数据,这也就意味着,用户可以决定自己的数据是否出售给相关广告商,广告的推送权也回归到用户的手中。并且如果用户同意分享自己的数据,那些广告的收入,也将会拿到属于自己的一份。
再举一个例子,通常而言,大数据在收集用户隐私数据之后,会对用户精准画像,不仅体现在广告的推送上,在日常视频、文章、购物,都会给用户进行相关的喜好的推荐,这些也无可厚非,但是在推荐这些内容的时候,相关企业都会掺杂私货,也就是在某几条内容中夹带盈利性质的广告。
而这些掺杂的广告大多数都属于三无产品,因此对于用户而言,购买其产品没有任何的保障。过去的魏则西事件,则是这种情况下典型的受害者。由于轻信了网站上推荐的医院广告,导致病情被耽误,最后病逝,这也是大数据没有得到有效监管的一个案例。
让数据的归属权回到用户手中
如果将区块链运用到大数据当中,魏则西这样的悲剧显然是能够避免的。用户通过区块链可以对自己的隐私数据进行跟踪、溯源,因此这种软文推送的权利掌握在用户自己手中,并且可以一眼就辨别哪些是软文,哪些又是真正的优质内容。
对于企业而言,把数据上传至区块链当中,这些数据会形成链条,具有真实、顺序、可追溯的特性,相当于已经从大数据中把有效数据进行了分类整理,也降低了企业对大数据处理的门槛,能够更快、更好的提取更多有利数据。
确切来说,区块链与大数据是一对相得益彰的伙伴,在收集数据上,区块链没有大数据如此擅长,而在数据安全上,大数据也没有区块链这般稳固。大数据的蓬勃发展也会相对带动区块链的进步,两者相辅相成,才会更好的为社会服务。
也许终有一天,我们可以完全掌握自己的信息,我们可以随意的查看我们真正想要的内容,不会在网上受到欺骗,不会在网络上被人带跑三观。届时,我们将在网络中找到最真实的自我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05