京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python内置模块logging用法实例分析
本文实例讲述了Python内置模块logging用法。分享给大家供大家参考,具体如下:
1、将日志直接输出到屏幕
import logging
logging.debug('This is debug message')
logging.info('This is info message')
logging.warning('This is warning message')
# 默认情况下,logging将日志打印到屏幕,日志级别为WARNING;
#output====================================
# WARNING:root:This is warning message

2.通过logging.basicConfig函数对日志的输出格式及方式做相关配置
import logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
filename='myapp.log',
filemode='w')
logging.debug('This is debug message')
logging.info('This is info message')
logging.warning('This is warning message')
#./myapp.log文件中内容为:
#Sun, 24 May 2009 21:48:54 demo2.py[line:11] DEBUG This is debug message
#Sun, 24 May 2009 21:48:54 demo2.py[line:12] INFO This is info message
#Sun, 24 May 2009 21:48:54 demo2.py[line:13] WARNING This is warning message
logging.basicConfig参数:
#logging.basicConfig函数各参数:
filename: 指定日志文件名
filemode: 和file函数意义相同,指定日志文件的打开模式,'w'或'a'
format: 指定输出的格式和内容,format可以输出很多有用信息,如上例所示:
%(levelno)s: 打印日志级别的数值
%(levelname)s: 打印日志级别名称
%(pathname)s: 打印当前执行程序的路径,其实就是sys.argv[0]
%(filename)s: 打印当前执行程序名
%(funcName)s: 打印日志的当前函数
%(lineno)d: 打印日志的当前行号
%(asctime)s: 打印日志的时间
%(thread)d: 打印线程ID
%(threadName)s: 打印线程名称
%(process)d: 打印进程ID
%(message)s: 打印日志信息
datefmt: 指定时间格式,同time.strftime()
level: 设置日志级别,默认为logging.WARNING
stream: 指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,当stream和filename同时指定时,stream被忽略
3、将日志同时输出到多个Handler
先定义一个住handler,并使用addHander()添加到主handler,实现日志输出到多个handler.
a、同时输出到文件和屏幕
import logging
#设置一个basicConfig只能输出到一个Handler
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
filename='myapp.log',
filemode='w')
#定义一个StreamHandler,将INFO级别或更高的日志信息打印到标准错误,并将其添加到当前的日志处理对象#
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
#输出到文件的log级别为debug,输出到stream的log级别为info
logging.debug('This is debug message')
logging.info('This is info message')
logging.warning('This is warning message')
b、添加一个handler:输出到文件,并根据文件大小滚动存储
在a的基础上添加一个handler
from logging.handlers import RotatingFileHandler
#定义一个RotatingFileHandler,最多备份5个日志文件,每个日志文件最大10M
Rthandler = RotatingFileHandler('myapp.log', maxBytes=10*1024*1024,backupCount=5)
Rthandler.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
Rthandler.setFormatter(formatter)
logging.getLogger('').addHandler(Rthandler)
logging几种Handler类型:
logging.StreamHandler(默认): 日志输出到流,可以是sys.stderr、sys.stdout或者文件
logging.FileHandler: 日志输出到文件
logging.handlers.RotatingFileHandler 日志输出到文件,基于文件大小滚动存储日志
logging.handlers.TimedRotatingFileHandler 日志输出到文件,基于时间周期滚动存储日志
logging.handlers.SocketHandler: 远程输出日志到TCP/IP sockets
logging.handlers.DatagramHandler: 远程输出日志到UDP sockets
logging.handlers.SMTPHandler: 远程输出日志到邮件地址
logging.handlers.SysLogHandler: 日志输出到syslog
logging.handlers.NTEventLogHandler: 远程输出日志到Windows NT/2000/XP的事件日志
logging.handlers.MemoryHandler: 日志输出到内存中的制定buffer
logging.handlers.HTTPHandler: 通过"GET"或"POST"远程输出到HTTP服务器
4、通过配置文件配置logger
a、定义配置文件logger.conf
#logger.conf
###############################################
[loggers]
keys=root,example01,example02
[logger_root]
level=DEBUG
handlers=hand01,hand02
[logger_example01]
handlers=hand01,hand02
qualname=example01
propagate=0
[logger_example02]
handlers=hand01,hand03
qualname=example02
propagate=0
###############################################
[handlers]
keys=hand01,hand02,hand03
[handler_hand01]
class=StreamHandler
level=INFO
formatter=form02
args=(sys.stderr,)
[handler_hand02]
class=FileHandler
level=DEBUG
formatter=form01
args=('myapp.log', 'a')
[handler_hand03]
class=handlers.RotatingFileHandler
level=INFO
formatter=form02
args=('myapp.log', 'a', 10*1024*1024, 5)
###############################################
[formatters]
keys=form01,form02
[formatter_form01]
format=%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s
datefmt=%a, %d %b %Y %H:%M:%S
[formatter_form02]
format=%(name)-12s: %(levelname)-8s %(message)s
datefmt=
b、logging.config获取配置
import logging
import logging.config
logging.config.fileConfig("logger.conf")
logger = logging.getLogger("example01")
logger.debug('This is debug message')
logger.info('This is info message')
logger.warning('This is warning message')
import logging
import logging.config
logging.config.fileConfig("logger.conf")
logger = logging.getLogger("example02")
logger.debug('This is debug message')
logger.info('This is info message')
logger.warning('This is warning message')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29