
论炒币者的自我修养
加密货币,这个词本身就充满了密码学的神秘感。
对一个新手而言,要学习如何炒币可能很困难。不过,当前众多的行业专家和在线资源十分便利,通过一些高质量的新媒体资讯平台,比如币圈邦德(害羞脸),任何人都可以学会加密货币交易的精髓。
初进币圈,你很快会认识到,比特币市场或其它加密货币市场与股票或外汇交易领域大不相同(币圈一天,股市一年)。或许,会有人告诉你,传统的技术分析在数字货币市场上根本行不通。然而,也有一些交易者用技术分析进行日常交易,甚至作为谋生手段,预测短期价格波动——准确度可观的分析往往深受广大加密货币交易者的喜爱。
(图)头肩顶形态
自我修养第一步,首先,交易者应该了解加密货币行业使用的最常见的一种金融图表,即日本烛台图表。每个“烛台”的大小代表一定的时间间隔,研究技术分析的交易者根据烛台图在市场中寻找价格的趋势。
有时候,你会听到某些图表模式的词语,如“头肩顶形态”、“杯柄形态”、“三顶和三底形态”,以及更多“时髦”的术语。在某种程度上,这些术语有助于交易者预测短期和长期加密货币价格走势。在熟练掌握足够多的形态样式之后,在日常交易时,老练的交易者一般都可以下意识地在心中勾画出这些图形。
(图)研究日本烛台图表有助于预测短期和长期价格变动的模式
(左图)看涨(右图)看跌
进阶的加密货币交易者可以通过使用各种工具来帮助预测市场中的价格变动。市场上最显著的指标之一是简单移动平均线(SMA)——即对特定期间的收盘价进行简单平均化。SMA是通过计算设定时间间隔内数字资产结算值的平均值而形成的趋势线。许多交易者都以此为参考进行交易。
指数移动平均线(EMA)和平行线差指标(DMA)比SMA更复杂一些。EMA以更快速的方式反应出价格波动,而DMA则在设定的时间内移动,以便交易者预测市场趋势。
(图)移动均线是交易者所遵循的常见趋势线
另一个用于交易数字资产的有用工具是相对强弱指数(RSI)。振荡线基本上决定了价格是上涨还是下跌。速度的测量记录在0-100之间,在许多市场中,它都是最受欢迎的交易指标之一。波浪线通常会横向或上下波动,如果线下跌至30以下,则市场处于超卖状态(看涨)。当RSI开始攀升超过70时,市场开始处于超买状态(看跌)。
(图)RSI和MACD是帮助交易者预测价格变动的指标
就加密货币交易工具而言,MA线和RSI只是冰山一角。资深的交易者还会使用其他工具,例如布林线指标(Bollinger Bands),平滑异同移动平均线(MACD),随机指标(Stochastic),区间振荡线(Detrended oscillator),斐波纳契回撤线(Fibonacci retracement)等等。这些工具与绘制的图表模式相结合,可以为交易者所用——不管是兼职玩币或是专业炒币。
此外,还有其他的方法,如艾略特波浪理论(Elliott Wave Theory)和道氏理论(Dowtheory)的原则,以便于预测比特币的价值起伏。
(图)艾略特波浪理论的5个基本波浪序列:1、3、5为推动浪;2、4为调整浪
资深的交易者可以理解上述的各种理论,并知道如何利用不同类型的指标来做市场预测。然而,聪明的交易者也在关注行业资讯,可以这么说,许多加密货币爱好者已经意识到新闻和社区的情绪可以改变比特币的价格。
例如,如果出现大规模的交易所被黑客攻击事件或政府的强力监管,那么在短期内,可以猜测比特币的价格会有所下降。如果出现芝加哥商业交易所(CME)和芝加哥期权交易所(Cboe)开启期货市场等利好消息,则可以推测价格会上涨。
大多数交易者都在密切关注加密货币及区块链行业中发生的一切,因为在这场“游戏”中,他们手握着大量的筹码。
(图)永远抄不到的底
炒币绝非易事,它需要时间和耐心。即使熟记所有的图表模式,指标和加密货币行业资讯,投资者照样可能会做出错误的预测,甚至可能失去一切。
像比特币这样的加密货币的走势往往可以“欺骗”交易者,所有的行业资讯和技术指标都可能突然失效。在比特币的世界里,拥有极高技术分析技能的交易者也可能在几分钟内一败涂地。
赌徒的心态,人性的贪婪,都可能蒙蔽我们的双眼,甚至让我们坠入万丈深渊。
最后,分享一句话。
“如果你认为仅仅靠技术就可以在加密货币市场里赚钱,那你肯定没经历过熊市。”
与诸君共勉。
如何掌握区块链技术
区块链创新的推动以及数字经济的蓬勃发展离不开人才的培育,而CDA数据分析师作为行业的领头羊,紧密结合当前区块链发展实际与人才需求结构,重磅推出CDA区块链学院。
扫描二维码,进入 CDA 区块链学院,学习区块链知识,选择很多,站对未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01