京公网安备 11010802034615号
经营许可证编号:京B2-20210330
聚类算法是一种无监督学习任务,用于将对象分到具有高度相似性的聚类中,聚类算法的思想简单的说就是物以类聚的思想,相同性质的点在空间中表现的较为紧密和接近,主要用于数据探索与异常检测,最常用的一种聚类算法是K均值(K-means)聚类算法

算法原理
kmeans的计算方法如下:
1 选取k个中心点
2 遍历所有数据,将每个数据划分到最近的中心点中
3 计算每个聚类的平均值,并作为新的中心点
4 重复2-3,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代
算法的时间复杂度上界为O(n*k*t), 其中k为输入的聚类个数,n为数据量,t为迭代次数。一般t,k,n均可认为是常量,时间和空间复杂度可以简化为O(n),即线性的
spark ml编码实践
可在spark-shell环境下修改参数调试以下代码,可以用实际的业务数据做测试评估,业务数据一般是多列,可以把维度列用VectorAssembler组装成向量列做为Kmeans算法的输入列,考虑现实的应用场景,比如做异常数据检测,正常数据分为一类,异常数据分为几类,分别统计正常数据与异常数据的数据量,求百分比等
<span style="font-size:18px;">import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
val dataset = sqlContext.createDataFrame(Seq(
(1, Vectors.dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(0.1, 0.1, 0.1)),
(3, Vectors.dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(9.0, 9.0, 9.0)),
(5, Vectors.dense(1.1, 1.1, 0.1)),
(6, Vectors.dense(12, 14, 100)),
(6, Vectors.dense(1.1, 0.1, 0.2)),
(6, Vectors.dense(-2, -3, -4)),
(6, Vectors.dense(1.6, 0.6, 0.2))
)).toDF("id", "features")
// Trains a k-means model
val kmeans = new KMeans().setK(3).setMaxIter(20).setFeaturesCol("features").setPredictionCol("prediction")
val model = kmeans.fit(dataset)
// Shows the result
println("Final Centers: ")
model.clusterCenters.foreach(println)
model.clusterCenters.zipWithIndex.foreach(println)
val myres = model.transform(dataset).select("features","prediction")
myres.show()</span>
聚类算法是一类无监督式机器学习算法,聚类效果怎么评估,模型训练参数怎么调优,是否能用管道来训练模型来比较各种不同组合的参数的效果,即网格搜索法(grid
search),先设置好待测试的参数,MLLib就会自动完成这些参数的不同组合,管道搭建了一条工作流,一次性完成了整个模型的调优,而不是独立对每个参数进行调优,这个还要再确认一下,查看SPARK-14516好像目前还没有一个聚类效果通用的自动的度量方法
像这种代码(不过现在这个代码有问题):
<span style="font-size:18px;">import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator }
import org.apache.spark.ml.{ Pipeline, PipelineStage }
val dataset = sqlContext.createDataFrame(Seq(
(1, Vectors.dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(0.1, 0.1, 0.1)),
(3, Vectors.dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(9.0, 9.0, 9.0)),
(5, Vectors.dense(1.1, 1.1, 0.1)),
(6, Vectors.dense(12, 14, 100)),
(6, Vectors.dense(1.1, 0.1, 0.2)),
(6, Vectors.dense(-2, -3, -4)),
(6, Vectors.dense(1.6, 0.6, 0.2))
)).toDF("id", "features")
val kmeans = new KMeans().setK(2).setMaxIter(20).setFeaturesCol("features").setPredictionCol("prediction")
//主要问题在这里,没有可用的评估器与label列设置
val evaluator = new BinaryClassificationEvaluator().setLabelCol("prediction")
val paramGrid = new ParamGridBuilder().addGrid(kmeans.initMode,
Array("random")).addGrid(kmeans.k, Array(3, 4)).addGrid(kmeans.maxIter,
Array(20, 60)).addGrid(kmeans.seed, Array(1L, 2L)).build()
val steps: Array[PipelineStage] = Array(kmeans)
val pipeline = new Pipeline().setStages(steps)
val cv = new
CrossValidator().setEstimator(pipeline).setEvaluator(evaluator).setEstimatorParamMaps(paramGrid).setNumFolds(10)
// Trains a model
val pipelineFittedModel = cv.fit(dataset)</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27