京公网安备 11010802034615号
经营许可证编号:京B2-20210330
聚类算法是一种无监督学习任务,用于将对象分到具有高度相似性的聚类中,聚类算法的思想简单的说就是物以类聚的思想,相同性质的点在空间中表现的较为紧密和接近,主要用于数据探索与异常检测,最常用的一种聚类算法是K均值(K-means)聚类算法

算法原理
kmeans的计算方法如下:
1 选取k个中心点
2 遍历所有数据,将每个数据划分到最近的中心点中
3 计算每个聚类的平均值,并作为新的中心点
4 重复2-3,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代
算法的时间复杂度上界为O(n*k*t), 其中k为输入的聚类个数,n为数据量,t为迭代次数。一般t,k,n均可认为是常量,时间和空间复杂度可以简化为O(n),即线性的
spark ml编码实践
可在spark-shell环境下修改参数调试以下代码,可以用实际的业务数据做测试评估,业务数据一般是多列,可以把维度列用VectorAssembler组装成向量列做为Kmeans算法的输入列,考虑现实的应用场景,比如做异常数据检测,正常数据分为一类,异常数据分为几类,分别统计正常数据与异常数据的数据量,求百分比等
<span style="font-size:18px;">import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
val dataset = sqlContext.createDataFrame(Seq(
(1, Vectors.dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(0.1, 0.1, 0.1)),
(3, Vectors.dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(9.0, 9.0, 9.0)),
(5, Vectors.dense(1.1, 1.1, 0.1)),
(6, Vectors.dense(12, 14, 100)),
(6, Vectors.dense(1.1, 0.1, 0.2)),
(6, Vectors.dense(-2, -3, -4)),
(6, Vectors.dense(1.6, 0.6, 0.2))
)).toDF("id", "features")
// Trains a k-means model
val kmeans = new KMeans().setK(3).setMaxIter(20).setFeaturesCol("features").setPredictionCol("prediction")
val model = kmeans.fit(dataset)
// Shows the result
println("Final Centers: ")
model.clusterCenters.foreach(println)
model.clusterCenters.zipWithIndex.foreach(println)
val myres = model.transform(dataset).select("features","prediction")
myres.show()</span>
聚类算法是一类无监督式机器学习算法,聚类效果怎么评估,模型训练参数怎么调优,是否能用管道来训练模型来比较各种不同组合的参数的效果,即网格搜索法(grid
search),先设置好待测试的参数,MLLib就会自动完成这些参数的不同组合,管道搭建了一条工作流,一次性完成了整个模型的调优,而不是独立对每个参数进行调优,这个还要再确认一下,查看SPARK-14516好像目前还没有一个聚类效果通用的自动的度量方法
像这种代码(不过现在这个代码有问题):
<span style="font-size:18px;">import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator }
import org.apache.spark.ml.{ Pipeline, PipelineStage }
val dataset = sqlContext.createDataFrame(Seq(
(1, Vectors.dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(0.1, 0.1, 0.1)),
(3, Vectors.dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(9.0, 9.0, 9.0)),
(5, Vectors.dense(1.1, 1.1, 0.1)),
(6, Vectors.dense(12, 14, 100)),
(6, Vectors.dense(1.1, 0.1, 0.2)),
(6, Vectors.dense(-2, -3, -4)),
(6, Vectors.dense(1.6, 0.6, 0.2))
)).toDF("id", "features")
val kmeans = new KMeans().setK(2).setMaxIter(20).setFeaturesCol("features").setPredictionCol("prediction")
//主要问题在这里,没有可用的评估器与label列设置
val evaluator = new BinaryClassificationEvaluator().setLabelCol("prediction")
val paramGrid = new ParamGridBuilder().addGrid(kmeans.initMode,
Array("random")).addGrid(kmeans.k, Array(3, 4)).addGrid(kmeans.maxIter,
Array(20, 60)).addGrid(kmeans.seed, Array(1L, 2L)).build()
val steps: Array[PipelineStage] = Array(kmeans)
val pipeline = new Pipeline().setStages(steps)
val cv = new
CrossValidator().setEstimator(pipeline).setEvaluator(evaluator).setEstimatorParamMaps(paramGrid).setNumFolds(10)
// Trains a model
val pipelineFittedModel = cv.fit(dataset)</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17