京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中的list和array的不同之处
python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同。
在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了
例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu。
1、numpy中封装的array有很强大的功能,里面存放的都是相同的数据类型
[python] view plain copy
list1=[1,2,3,'a']
print list1
a=np.array([1,2,3,4,5])
b=np.array([[1,2,3],[4,5,6]])
c=list(a) # array到list的转换
print a,np.shape(a)
print b,np.shape(b)
print c,np.shape(c)
运行结果:
[python] view plain copy
[1, 2, 3, 'a'] # 元素数据类型不同,并且用逗号隔开
[1 2 3 4 5] (5L,) # 一维数组,类型用tuple表示
[[1 2 3]
[4 5 6]] (2L, 3L)
[1, 2, 3, 4, 5] (5L,)
注意:
如果a是array,结果是:[1 2 3 4 5]
如果a是list,结果是:[1, 2, 3, 4, 5]
2、array的创建:参数既可以是list,也可以是元组.使用对应的属性shape直接得到形状
a=np.array((1,2,3,4,5))# 参数是元组
b=np.array([6,7,8,9,0])# 参数是list
c=np.array([[1,2,3],[4,5,6]])# 参数二维数组
print a
print b
print c
print c.shape
结果:
[1 2 3 4 5]
[6 7 8 9 0]
[[1 2 3]
[4 5 6]]
(2L, 3L)
3、也可以直接改变属性array的形状,-1代表的是自己推算。这里并不是T, reshape(())也可以
1)
c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
print c.shape # (3L, 4L)
c.shape=2,-1
print c.shape
c.shape=4,-1
print c.shape
结果:
(3L, 4L)
(2L, 6L)
(4L, 3L)
2)
c1 = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
d=c1.reshape((4,-1))#d 已变成4 行3 列
d[1:2]=66 #把第1行所有元素变为66
print d
d[1:3]=66 #把第1,2 两行所有元素变为66
print d
结果:
[[ 1 2 3]
[66 66 66]
[ 6 7 7]
[ 8 9 10]]
[[ 1 2 3]
[66 66 66]
[66 66 66]
[ 8 9 10]]
X1=np.array([[1,2],[3,5],[1,9],[3,4],[1,8],[3,14],[1,10],[31,4]])
nn = np.array([2,3,5,7])
print X1[nn] #显示第2,3,5,7 行的内容
结果:
[[ 1 9]
[ 3 4]
[ 3 14]
[31 4]]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28