京公网安备 11010802034615号
经营许可证编号:京B2-20210330
深度学习入门课程学习笔记04 softmax分类器
前向传播之-softmax
softmax:这个分类器可以说是咱们深度学习领域最常见的一个分类器了,如果大家对逻辑回归有基础的话那么这个softmax分类器可以当成一个多分类的逻辑回归。
sigmoid:上图就是咱们这个sigmoid函数了,这个函数很重要无论在softmax还是在咱们之后会讲到的激活函数上,所以咱们先来看看这个函数是干什么用的,首先咱们先来看它的自变量X得到取值范围,可以看到咱们的X可以取正无穷到负无穷的一切实数,那么对应的Y也就是值域的范围是从0到1的。那么对于一个任意的输入X1我们都可以得到一个对应的值Y1,这个Y1是在0到1之间的一个数,也就是我们可以把所有的值都压缩到0到1这个区间内,结合咱们之前的得分函数,一个输入对于每一个类别的得分X,我们都可以把这个得分映射到[0,1]区间内,也就是把我们的得分数值转成了相应的概率值。
softmax-loss计算:这一系列的公式其实就告诉了咱们一件事咱们这个分类器最终的LOSS值是如何计算出来的,首先咱们对应于一个输入计算出了它属于每一个类别的得分数值,然后再用上面讲的sigmoid函数把所有的得分数值映射成一个概率值,有了概率值之后loss的计算就是对最终正确分类所占的概率求一个LOG值再取负号就OK了。
动手算:咱们现在就来动手算一下这个LOSS值是什么计算的,首先对每个得分数值计算其指数次幂,然后对于得到的所有值再做一个归一化的操作,最后把正确分类的那个概率值带到LOSS计算公式中就性啦。
SVM和SOFTMA对比:从图中可以到最明显的区别就是LOSS值的计算方式,SVM是计算的分值的一个差值情况,SOFTMAX看的则是分类的准确率。这里就不详细推导他们优缺点了,可以告诉大家的是SOFTMAX对错误的分类敏感程度更高,其实SOFTMAX是一个永不满足的分类器,它的LOSS始终存在的,感兴趣的同学可以自己算一算LOSS的流程就知道了,所以在深度学习领域我们使用的更多的是SOFTMAX分类器。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27