京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前向传播之-损失函数
损失函数:在前面一节咱们介绍了得分函数,就是给定一个输入,对于所有类别都要给出这个输入属于该类别的一个分值,如上图所示,对于每一个输入咱们都有了它属于三个类别的得分,但是咱们光有这个得分却不知道如何来评判现在的一个分类效果,这节课咱们就要用损失函数来评估分类效果的好坏,而且不光是好坏还要表现出来有多好有多坏!
我们接下来就拿SVM的损失函数来说事吧。什么?你不知道SVM是啥?没关系,我会用很简单的语言来说这个损失函数的。对于SVM来说它的损失函数如上图的公式所示,我们要算的就是对于一个输入样本,这个样本的正确分类的分值和其他所有错误分类的分值的差值,再把这些所有的差值进行求和。我们拿这个小猫来举例吧,就是用它正确分类的分3.2与其它错误分类的得分5.1和-1.7求差值,再把求得的差值和0进行对比,如果大于0就加在最终的LOSS值上。细心的同学可能发现了上面的公式还加了一个数值1,那么这个数值代表着什么呢?它的意思啊就是说咱们求出的得分差异值还要去和咱们的满意程度进行比较,这个1就代表了咱们的满意程度有多大,这个值越大呢就说明咱们的要求越高。
图中红色的区域就是咱们的满意程度,一旦错误分类的得分(绿色区域)超过了红色值,就是说没达到咱们设定的满意程度值,LOSS值就要开始增加了。
正则化:假设有一个样本x=[1,1,1,1],现在咱们有两组权重参数W1和W2如上图所示,这样对于得分值WX,两组权重参数得出的结果都一样,但是分值一样能说明这两个参数模型的分类效果一模一样吗?接下来就引入了咱们的正则化项来解决这个问题,正则化就是对权重参数进行惩罚,目的就是找到一组更平滑的参数项。正则化项的结果就是对于不同权重参数W进行不同力度的惩罚,惩罚也就是增加其LOSS值。正则化对于整个分类模型来说非常重要,可以很有效的抑制了过拟合现象。
LOSS终极版:由LOSS最终版的公式可以看到。LOSS是由两部分组成的,一部分是得分函数对应的LOSS值另一个部分是正则化惩罚项的LOSS值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17