京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前向传播之-损失函数
损失函数:在前面一节咱们介绍了得分函数,就是给定一个输入,对于所有类别都要给出这个输入属于该类别的一个分值,如上图所示,对于每一个输入咱们都有了它属于三个类别的得分,但是咱们光有这个得分却不知道如何来评判现在的一个分类效果,这节课咱们就要用损失函数来评估分类效果的好坏,而且不光是好坏还要表现出来有多好有多坏!
我们接下来就拿SVM的损失函数来说事吧。什么?你不知道SVM是啥?没关系,我会用很简单的语言来说这个损失函数的。对于SVM来说它的损失函数如上图的公式所示,我们要算的就是对于一个输入样本,这个样本的正确分类的分值和其他所有错误分类的分值的差值,再把这些所有的差值进行求和。我们拿这个小猫来举例吧,就是用它正确分类的分3.2与其它错误分类的得分5.1和-1.7求差值,再把求得的差值和0进行对比,如果大于0就加在最终的LOSS值上。细心的同学可能发现了上面的公式还加了一个数值1,那么这个数值代表着什么呢?它的意思啊就是说咱们求出的得分差异值还要去和咱们的满意程度进行比较,这个1就代表了咱们的满意程度有多大,这个值越大呢就说明咱们的要求越高。
图中红色的区域就是咱们的满意程度,一旦错误分类的得分(绿色区域)超过了红色值,就是说没达到咱们设定的满意程度值,LOSS值就要开始增加了。
正则化:假设有一个样本x=[1,1,1,1],现在咱们有两组权重参数W1和W2如上图所示,这样对于得分值WX,两组权重参数得出的结果都一样,但是分值一样能说明这两个参数模型的分类效果一模一样吗?接下来就引入了咱们的正则化项来解决这个问题,正则化就是对权重参数进行惩罚,目的就是找到一组更平滑的参数项。正则化项的结果就是对于不同权重参数W进行不同力度的惩罚,惩罚也就是增加其LOSS值。正则化对于整个分类模型来说非常重要,可以很有效的抑制了过拟合现象。
LOSS终极版:由LOSS最终版的公式可以看到。LOSS是由两部分组成的,一部分是得分函数对应的LOSS值另一个部分是正则化惩罚项的LOSS值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27