
如何锻炼出强悍的分析能力
这个问题问的是如何锻炼出强悍的分析能力——那我确实蛮适合回答的。 先放结论:培养强悍的分析能力这个事儿,我的建议是: 1.学一门学科:信息分析; 2.入门几个关键学科,多了解几种分析范式; 3.掌握信息分析的基本工具与方法; 1.学一门学科:信息分析 有很多人谈到的提高分析能力的方法,大都玄乎其玄,说的跟成功学一样——为什么不好好坐下来,专门学一门讲求分析的非常正规的学科呢? 是的,这门正规的、专讲分析的学科就叫做:信息分析。(李彦宏学的“信息管理”这个专业,其核心课程,也就是信息分析) 这门学科主要讲什么? 如其名,主要讲的就是对信息进行分析,当然,你也可能在别的地方听过它的其它的高大上的名字,包括:经济分析、经济预测、市场分析;情报分析、情报调研、情报研究;社会调查、舆情分析、未来研究等。 支撑这门学科的思想,也横贯了逻辑、统计、博弈论、心理学、经济学、管理学、控制论等重要学科。这门学科当然也不是讲玄乎的理论的,而是非常注重方法、术、手段、推理的。
为什么必须要学这门学科? 因为: (1).所有的分析过程,总的来说,都是对信息的处理、分析,而这门学科,便是主讲信息分析的; (2).正规、学术化,有着顶尖专家的研究,集结了前人的智慧,不会像一些成功学一样吹牛逼; (3).讲求方法、术,稳准狠,但是又注重体系化,学了不会走火入魔,而是了解到人的局限、世界的复杂,不会跟个中二青年一样,天天觉得自己掌握了趋势。 学了之后还可以分析能力还可以进阶吗? 当然可以,进阶有两个两个方面:一个是结合别的学科,比如经济学、管理学,国际政治学等,提高自己在特定领域的分析能力;一个是培养自己对纯信息分析的分析能力,比如数据挖掘与分析的能力。 2.入门几个关键学科,多了解几种分析范式 一方面:每一门学科都有着自己的研究经验、研究范式,仔细学习,能收获好多关于如何分析的思想和方法;另一方面,每一门学科内有自己的定义架构,了解这个定义架构,有助于理解定义架构下的世界,从而提高自己的分析能力。 (1).“定义架构” 定义架构指的是,每一门学科里面,都有一些既成的组织化的定义,确定了什么现象是什么,区分了事物的边界和联系,好比是一副有色眼镜,戴上它,世界会清晰好多。 比如你要去做经济分析,你肯定要了解经济学,不要重复去造轮子,自己再去定义什么现象叫什么,这样得不偿失,而且,往往还会导致:你以为你发现了真理,其实你只是换了个说法说明了一些早已被证明是错误的东西罢了。 (如果用编程的说法来说的话,这些定义架构就好比是前人已经写好的库和模块,已经很好用了,就不要重复去造轮子。(当然,你也可以重造,但是,你认为你是想成为开天辟地的大师还是一个分析者?)) (2).要入门哪些学科? 要入门学科包括:心理学(大多数分析,其核心都是在分析人);经济学(描述了这个世界的运行);社会学(有一套自有的话语范式与研究成果)。
具体更完整的我推荐看一下我的答案:对于世界的抽象认识与复杂性研究,你有哪些心得和书籍推荐? 3.掌握信息分析的基本工具与方法 基础打牢了,方法学会了,只会出去跟出租车司机吹会儿牛逼能行吗?我们要做出成果,并且在做出成果的过程中,磨练自己的思想、体会分析的方法,乃至作出创新。 (1).初阶版:脑图工具+文本工具 这些脑图、结构图的工具,各个平台上都有很多,我一般喜欢在ipad与PC平台上面使用: ipad:Mindly,Mindo,iThoughts; PC:Edraw Max,MindManager; 这些脑图、流程图的工具很多,你可以自己选择自己喜欢的。 文本工具就是说,要培养自己的写写画画的能力,让自己具有结构分析的思维和能力。
在这里推荐一本《金字塔原理》 (2).进阶版:Office 进阶版就是excel+ppt+word这些东西,因为一个人的分析,不仅仅是在脑子里面分析了就完了,还要呈现出来,得到反馈。 (3).高阶版:python+各种模块+数据分析与挖掘软件 学会python,结合它的强悍的数据分析能力与各种模块、库、工具(比如ipython,scipy,numpy模块,PyGt等),然后最好系统地学一下统计学,以及SPSS软件,Orange Canvas等,把自己从一个信息分析的票友变成专业的分析人员吧! 其中,关于python的一个答案:大学里 C++ 课程听不懂,但是想当程序员,还有希望么? 写完了,
总结与延伸一下: (1).如果说只是培养较好的分析能力,那么你看几本信息分析方面的书就好了,(比如:信息分析 (豆瓣),信息分析与预测 (豆瓣),信息分析与决策 (豆瓣),建议到图书馆里面去找,专业的信息分析书籍有很多)这里面讲了很多直接可以用但又发人深省的方法,好好学习一下,分析能力肯定是可以提升的; (2).如果说是要培养强悍的分析能力,那么请入专业分析的大坑。 (3).较好的分析能力与强悍的分析能力的差别:较好的分析就是在脑子里面分析有限的事实与数据,对于大量的数据、超出人类直觉的东西,往往束手无策(这世界上大部分事件,都是超出人脑的处理能力的);强悍的分析能力则更要求专业化,借助更多专业工具,更讲求稳准狠。 目前,我也走在成为分析高手的路上,与诸位共勉!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04