京公网安备 11010802034615号
经营许可证编号:京B2-20210330
华尔街传奇人物詹姆斯·西蒙斯(James Simons)运作的大奖章基金(Medallion)在1989-2009的二十年间,平均年收益率为35%,若算上44%的收益提成,则该基金实际的年化收益率可高达60%,比同期标普500指数年均回报率高出20多个百分点。
最为难能可贵的是,纵然是在次贷危机全面爆发的2008年,该基金的投资回报率仍可稳稳保持在80%左右的惊人水准。
西蒙斯通过将数学模型和投资策略相结合,逐步走上神坛,开创了由他扛旗的量化时代。
量化投资,就是利用计算机技术并且采用一定的数学模型去实践投资理念,实现投资策略的过程。
价值投资和趋势投资(技术分析)是引领过去一个世纪的投资方法,随着计算机技术的发展,已有的投资方法和计算机技术相融合,产生了量化投资。
常用的量化投资的工具有R/MATLAB/Python,各有利弊,选择Python的优势在于:
首先,开放,各种平台可以用,开源各种分析工具包,时间系列,机器学习等都方便。文件处理,网络,数据库对接都很容易。
其次,有不同的开源包或者接口支持不同的功用,性能不是问题。
再次,Python已成为人工智能时代流行的语言之一。
更简单,更通用,能做更多的事情,
这也是本次量化投资现场培训选择Python授课的主要原因:
Python量化投资从零基础到实战
时间:2018年4月20-23日 (四天)
安排:上午9:00-12:00;下午1:30-4:30;答疑4:30-5:00
地点:北京市海淀区厂洼街3号丹龙大厦附近
学费:5000元 / 4200元 (仅限全日制在读本科生及硕士生优惠价);食宿自理
我要报名
讲师介绍:
蔡立耑(Terry Tsai),美国伊利诺伊大学金融硕士,华盛顿大学经济学硕士、博士,在国内外如美国、韩国有丰富的授课经验。带领博、硕士生从事投资决策、金融衍生品、风险分析、交易策略等领域的研究。经管之家资深金牌量化投资讲师。
亲身实践各种金融应用,主持研究团队与台湾知名大学与企业合作开展各种金融研究,例如量化投资、风险分析等。在统计套利、金融大数据等领域有丰富的操作经验与授课经验。带领的量化投资研究团队用多种编程语言实现了统计套利以及风险管理自动化程序。
课程特色:
1:现场教学,可现场和老师互动,解决当下的量化投资疑惑;
2:课程内容丰富,囊括了必备的量化投资的理论知识;
3:课程内容新颖,应用前沿的学术理论;
4:教学过程深入浅出,以实例与实作印证所学;
5:学员能掌握Python,能在现实中通过此工具解决量化投资等综合金融问题;
6:可操作性强,将所介绍理论在实战中一一展示,即学即用,在实战中搭建课程的整体脉络。
课程大纲:
一、Python 编程
二、Python数据分析
1. Numpy
2. Pandas
3. Matplotlib
三、MongoDB
四、基本面:大师选股策略
1. 本杰明·格雷厄姆
2. 詹姆斯·奥肖内西
3. 查尔斯·布兰德斯
4. 彼得·林奇
5. 史蒂夫·路佛
五、技术面:择时判断买卖点
1. 捕捉K线形态
(1) 红三兵
(2) 金针探底
(3) 双响炮
(4) 小探兵
(5) 一阳穿三线
2. 趋势分析
(1) W底突破
(2) 关键点买入形态量化策略
(3) 上升三角形突破
(4) 三到五日下跌法策
(5) 上升平台突破
3. 技术指标分析
(1) MACD
(2) KDJ
(3) BOLL
(4) OBV
(5) RSI
(6) MA
六、神经网路与深度学习在量化交易中的应用
1. 神经网络
2. 卷积神经网路
3. 循环神经网路
报名流程:
1:点击“我要报名”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06