
如何用stata做稳健回归
大量的线性回归模型是基于最小二乘法实现的,但其仍存在一些局限性。比如说,样本点出现许多异常点时,传统的最小二乘法将不再适用,此时则可以使用稳健回归(robust regression)代替最小二乘法。
操作
下面的稳健回归使用的是犯罪数据,该数据来自Alan Agresti和Barbara Finlay的《社会科学统计方法》。变量包括美国各州编号(sid)、州名(state)、每10万人犯罪案件数量(crime)、生活在贫困线以下人口的百分比(poverty)和单亲人口百分比(single)等。我们选择使用贫穷率和单状况来预测犯罪率。
获取数据
use https://stats.idre.ucla.edu/stat/stata/dae/crime, clear导入数据,并描述各个变量的统计结果,输出表格中包含样本容量、平均数、标准差、最小值和最大值。
OLS回归
在稳健回归之前,我们先进行OLS回归,输出结果如下。
样本点分析
首先我们通过“lvr2plot”绘制残差杠杆图,通过识别离群点和高杠杆值点(杠杆点)进而识别强影响点。假如存在杠杆点的话,要确定哪些是bad leverage point,对于这些离群点我们要评估它对拟合模型的影响。
由图中我们可以看出,dc、ms、fl三个点残差较大或者杠杆值比较高。库克距离是杠杆值与残差大小的综合效应,一般而言,库克距离大于1,则可认为该样本点为强影响点。接下来我们计算各点的库克距离(Cook’s Distance),并输出结果。
由结果可以看出,dc点库克距离大于1,表明dc这一样本点对于回归结果会产生较强的影响,在之后的稳健回归中我们会对dc点进行特殊处理。
接下来我们分析数据的残差。使用rstandard这一命令,它表示标准化残差的绝对值。
稳健回归
我们使用“rreg”命令进行稳健回归,并输出结果如下。
对比最开始的OLS回归,我们发现两者差异较大。并且稳健回归中的样本点数量是50,OLS回归中为51,这是因为经过前面的分析,由于dc这一异常值点对回归结果影响较强,因此在稳健回归中我们将其舍去。下面的操作表明在稳健回归中,dc样本点所占权重为零。
下面的命令展示了其他权重较小的观察值,一般而言,残差较大的观察值权重较小,例如我们之前提到的ms点。在OLS回归中,所有样本点的权重都是1,因此稳健回归中越多的样本点权重是1,其回归结果与OLS结果越相近。
我们还可以通过绘制圆圈的方式形象地展现这一关系。下图中横坐标表示单亲率,纵坐标表示犯罪率,每一个圆圈表示一个样本点,圆心为该样本点在坐标中的位置,圆圈直径越大,表示该样本点权重越大。
拓展
我们在稳健回归分析之后,可以使用许多后续估计命令,比如test、margin等。下面的操作是我们控制贫困率之后,在不同的单亲率下预测犯罪率。我们发现,随着单亲率的提高,犯罪率也相应地上升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15