京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用stata做稳健回归
大量的线性回归模型是基于最小二乘法实现的,但其仍存在一些局限性。比如说,样本点出现许多异常点时,传统的最小二乘法将不再适用,此时则可以使用稳健回归(robust regression)代替最小二乘法。
操作
下面的稳健回归使用的是犯罪数据,该数据来自Alan Agresti和Barbara Finlay的《社会科学统计方法》。变量包括美国各州编号(sid)、州名(state)、每10万人犯罪案件数量(crime)、生活在贫困线以下人口的百分比(poverty)和单亲人口百分比(single)等。我们选择使用贫穷率和单状况来预测犯罪率。
获取数据
use https://stats.idre.ucla.edu/stat/stata/dae/crime, clear导入数据,并描述各个变量的统计结果,输出表格中包含样本容量、平均数、标准差、最小值和最大值。
OLS回归
在稳健回归之前,我们先进行OLS回归,输出结果如下。
样本点分析
首先我们通过“lvr2plot”绘制残差杠杆图,通过识别离群点和高杠杆值点(杠杆点)进而识别强影响点。假如存在杠杆点的话,要确定哪些是bad leverage point,对于这些离群点我们要评估它对拟合模型的影响。

由图中我们可以看出,dc、ms、fl三个点残差较大或者杠杆值比较高。库克距离是杠杆值与残差大小的综合效应,一般而言,库克距离大于1,则可认为该样本点为强影响点。接下来我们计算各点的库克距离(Cook’s Distance),并输出结果。

由结果可以看出,dc点库克距离大于1,表明dc这一样本点对于回归结果会产生较强的影响,在之后的稳健回归中我们会对dc点进行特殊处理。
接下来我们分析数据的残差。使用rstandard这一命令,它表示标准化残差的绝对值。
稳健回归
我们使用“rreg”命令进行稳健回归,并输出结果如下。

对比最开始的OLS回归,我们发现两者差异较大。并且稳健回归中的样本点数量是50,OLS回归中为51,这是因为经过前面的分析,由于dc这一异常值点对回归结果影响较强,因此在稳健回归中我们将其舍去。下面的操作表明在稳健回归中,dc样本点所占权重为零。

下面的命令展示了其他权重较小的观察值,一般而言,残差较大的观察值权重较小,例如我们之前提到的ms点。在OLS回归中,所有样本点的权重都是1,因此稳健回归中越多的样本点权重是1,其回归结果与OLS结果越相近。

我们还可以通过绘制圆圈的方式形象地展现这一关系。下图中横坐标表示单亲率,纵坐标表示犯罪率,每一个圆圈表示一个样本点,圆心为该样本点在坐标中的位置,圆圈直径越大,表示该样本点权重越大。
拓展
我们在稳健回归分析之后,可以使用许多后续估计命令,比如test、margin等。下面的操作是我们控制贫困率之后,在不同的单亲率下预测犯罪率。我们发现,随着单亲率的提高,犯罪率也相应地上升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01