京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何踏上人工智能与数据科学之路(机器学习篇)
如何打开机器学习的大门
AI这个词相信大家都非常熟悉了,在几年人公智能圈子格外热闹,先是阿法狗带了个好头,让大家重新对人工智能刮目相看。能取得今天这样的成绩绝非瞬间的爆发而是多少年日益的积累。今天咱们就来唠一唠如何进军人工智能的第一步-机器学习。
我选Python玩AI:
Python语言已经非常火爆了,有句古话说得好,人生苦短,我用Python。在机器学习这个领域Python已经成为了主流,一方面因为这门语言简直太简单了,就我个人而言我搞过C++也玩过JAVA但是学起来用起来相对来说都比较难(说白了。。。就是我比较懒),但是python用起来简直不要太轻松,这也是推荐新手选择python的原因,非常容易上手,决没有恶心到家的指针。另一方面现在无论是做项目还是搞研究都非常追求效率,绝大多数情况下,很多代码都不需要自己从头到尾实现,而是调用已经非常完善的库了,这也是我觉得python最强大的地方,可以很轻松的安装好一个想用的库,用这些库帮助我们解决问题。
对于刚入门的同学来说,肯定不会自己动手一步一步的去实现所有需要的技术代码,一个最直接的学习方法就是结合开源的框架,那么可以说机器学习和深度学习的开源框架基本都是python接口的,能用这些开源框架是我们学习的一个最基本的手段啦,所以重要的事情说三遍,python!python!python!
Python科学计算库-Numpy
说到机器学习,简单来说就是,数据输入进来,然后得出一个想要的结果。那么在中间我们计算的是什么呢,为了计算的高效和方便,通常都是将数据转换成矩阵的形式,也就是行作为样本,列作为特征。那么这些复杂的矩阵计算我们该怎么样完成呢?这里我们就需要Numpy了,它可以帮助我们很轻松的完成一系列的计算。如果你要跟数据打交道,那么Nmupy你肯定离不开了。
Python数据分析处理库-Pandas
在做任何一个机器学习算法之前都需要对数据进行预处理,也就是说数据是不纯净的,首先我们需要提取特征,再去除一些错误的有问题的样本,那么这些该快速完成呢,如果你喜欢偷懒要快速做完这些苦活,那么Pandas将会是一个非常不错的选择,在这里,你只需要简单的几行代码就可以对数据做好预处理的操作。
Python数据分析处理库-Matplotlib
数据分析和机器学习都离不开可视化展示,因为无论是做项目交付还是搞算法研究,都需要对自己的成果心里有个数吧,那么在这里我们就可以用Matplotlib来完成这个事,还是简单的几行代码,就能把结果轻松展示出来。
Python机器学习库-Scikit-Learn
这个武器十分有杀伤力,它就是我们机器学习必备的家伙,在这里我们可以选择任何你喜欢的机器学习算法,然后把数据输入进来,直接RUN就可以迭代计算了,简单太自动了,这个库十分强大,封装了大量机器学习算法以及评估和预处理等操作。轻轻松松几行,一个复杂的机器学习算法已经在跑了。
数据与实战
在机器学习这条路上,我们一定会跟数据打交道,这里十分推荐大家找一些真是的案例数据,用这些python库来实际的玩一玩。因为这些库都是开源的,咱们也可以自己打一些断点,从流程上一步一步走完整个机器学习的算法。
有很多同学都问过我,基础很一般能入门机器学习吗,听说机器学习对数学的要求很高,这该怎么办呀?说实话机器学习就是数学公式组成的,但是如果不搞科研的话我觉得能把流程和应用搞懂已经足够用了,并不推荐新手直接从数学开始进军,因为我觉得这个活太枯燥了,不见得大家都能有这种持之以恒的毅力坚持住。我觉得可以从案例和应用下手,先了解算法从头到尾做了一件什么事以及能用在什么地方,再回过头来去搞算法的推导效果应该会更好的、
学习路线图
这个路线图是针对咱们要入门的同学制定的,已然成神的同学们可不使用哦。
(一)搞定Python:
千万别花个把个月转攻这个,因为语言只是一个工具,我们完全可以边用边学,建议快速掌握基本语法,边练边学。
(二)机器学习算法:
机器学习有很多经典的算法,咱们不妨从最简单的K近邻开始,用python实现出这些经典的机器学习算法从流程的角度熟悉这些算法的原理。
(三)熟悉这些库:
如果大家想精通这些库,我觉得难度还是蛮大的,不妨先熟悉这些库能做什么,等咱们实际用的时候再去查语言就完全来得及。因为我用了这么久大部分函数还得每次用的时候现查,即便我知道该这么用还是会不放心查一查。
(四)案例与实战:
用真实数据来玩算法是学习的最好方式。咱们可以找一些真实的数据来练练这些机器学习算法,先搞定算法的原理,再把数据应用进去,然后就是一步一步debug完成整个项目。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27