
大数据的关键技术
大数据环境下的数据处理需求
大数据环境下数据来源非常丰富且数据类型多样,存储和分析挖掘的数据量庞大,对数据展现的要求较高,并且很看重数据处理的高效性和可用性。
传统数据处理方法的不足
传统的数据采集来源单一,且存储、管理和分析数据量也相对较小,大多采用关系型数据库和并行数据仓库即可处理。对依靠并行计算提升数据处理速度方面而言,传统的并行数据库技术追求高度一致性和容错性,根据CAP理论,难以保证其可用性和扩展性。
传统的数据处理方法是以处理器为中心,而大数据环境下,需要采取以数据为中心的模式,减少数据移动带来的开销。因此,传统的数据处理方法,已经不能适应大数据的需求!
大数据的处理流程包括哪些环节?每个环节有哪些主要工具?
大数据的基本处理流程与传统数据处理流程并无太大差异,主要区别在于:由于大数据要处理大量、非结构化的数据,所以在各个处理环节中都可以采用MapReduce等方式进行并行处理。
大数据技术为什么能提高数据的处理速度?
大数据的并行处理利器——MapReduce
大数据可以通过MapReduce这一并行处理技术来提高数据的处理速度。MapReduce的设计初衷是通过大量廉价服务器实现大数据并行处理,对数据一致性要求不高,其突出优势是具有扩展性和可用性,特别适用于海量的结构化、半结构化及非结构化数据的混合处理。
MapReduce将传统的查询、分解及数据分析进行分布式处理,将处理任务分配到不同的处理节点,因此具有更强的并行处理能力。作为一个简化的并行处理的编程模型,MapReduce还降低了开发并行应用的门槛。
MapReduce是一套软件框架,包括Map(映射)和Reduce(化简)两个阶段,可以进行海量数据分割、任务分解与结果汇总,从而完成海量数据的并行处理。
MapReduce的工作原理其实是先分后合的数据处理方式。Map即“分解”,把海量数据分割成了若干部分,分给多台处理器并行处理;Reduce即“合并”,把各台处理器处理后的结果进行汇总操作以得到最终结果。如右图所示,如果采用MapReduce来统计不同几何形状的数量,它会先把任务分配到两个节点,由两个节点分别并行统计,然后再把它们的结果汇总,得到最终的计算结果。
MapReduce适合进行数据分析、日志分析、商业智能分析、客户营销、大规模索引等业务,并具有非常明显的效果。通过结合MapReduce技术进行实时分析,某家电公司的信用计算时间从33小时缩短到8秒,而MKI的基因分析时间从数天缩短到20分钟。
说到这里,再看一看MapReduce与传统的分布式并行计算环境MPI到底有何不同?MapReduce在其设计目的、使用方式以及对文件系统的支持等方面与MPI都有很大的差异,使其能够更加适应大数据环境下的处理需求。
大数据技术在数据采集方面采用了哪些新的方法
系统日志采集方法
很多互联网企业都有自己的海量数据采集工具,多用于系统日志采集,如Hadoop的Chukwa,Cloudera的Flume,Facebook的Scribe等,这些工具均采用分布式架构,能满足每秒数百MB的日志数据采集和传输需求。
网络数据采集方法:对非结构化数据的采集
网络数据采集是指通过网络爬虫或网站公开API等方式从网站上获取数据信息。该方法可以将非结构化数据从网页中抽取出来,将其存储为统一的本地数据文件,并以结构化的方式存储。它支持图片、音频、视频等文件或附件的采集,附件与正文可以自动关联。
除了网络中包含的内容之外,对于网络流量的采集可以使用DPI或DFI等带宽管理技术进行处理。
其他数据采集方法
对于企业生产经营数据或学科研究数据等保密性要求较高的数据,可以通过与企业或研究机构合作,使用特定系统接口等相关方式采集数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03