
Stata软件对截断和删失数据处理方法介绍
截断和删失是完全不同的现象,都会导致我们的样本不完整。这些现象出现在医疗科学、工程、社会科学和其他研究领域。如果忽略截断和删失,当我们分析数据时,我们的人口参数估计就会不一致。
截断和删失会出现在处理样本的过程中,那我们就从定义左截断和左删失开始:
当低于阈值的个体在样本中不存在时,我们的数据就属于左截断。比如,我们想研究某些鱼的大小,以捕鱼网为样本,鱼小于鱼网,所以在我们的样本中是不存在的。
我们的数据从K开始左删失,如果每个个体值在样本中存在并低于K,但实际值未知。例如,我们有一个测量仪器,不能检测到一定水平以下的值时,就会发生这种情况。
我们主要讨论左截断和左删失,但是我们讨论的概念可以应用到所有的截断和删失中去:右截断、右删失和区间。
当执行截断或删失数据的估计时,我们需要使用一些工具来说明这些不完整的数据。对于截断线性回归,我们可以使用truncreg命令;对于删失线性回归,我们可以使用intreg和tobit命令。
这篇文章,我们将要分析截断数据和删失数据的特征,并讨论用truncreg命令和tobit命令来说明不完整的数据。
截断数据
案例:皇家海军陆战队
Fogel et al.(1978)发布了皇家海军陆战队人员的身高的数据集,此数据可以扩展到2个世纪。它可以用来确定不同时期,英国男性的平均身高。Trussell and Bloom (1979)指出样本被截断,由于新兵最低身高的限制。数据被截断了(而不是删失),因为身高低于最低限制的个人都没有出现在样本中。考虑到这一事实,他们拟合了1800年到1809年期间皇家海军陆战队身高的截断分布。
由于Trussell和Bloom提到的问题,我们使用了人工数据集。我们假设人口数据服从正态分布μ=65和σ=3.5,并且都是左截断到64.
我们使用一个直方图来总结我们的数据:
可以看到截断点,没有小于64的数据。
如果我们忽略截断,会发生什么呢?
如果我们忽略截断,将不完整的数据视为完整的,样本均值与总体均值就会不一致,因为截断点以下的所有观测值都是缺失的。在我们的实例中,真实的均值95%都在置信区间预测平均值外。
我们可以将样本直方图与忽略截断后得出的正态分布进行比较,并且把这些值看成是人口均值和标准差的估计。
使用truncreg考虑截断
我们可以使用truncreg来估计潜在非截断分布的参数。考虑左截断64,可以使用选项ll(64)。
现在估计的值接近我们的实际模拟值μ=65,σ=3.5。
让我们将截断密度重叠到数据直方图中去。
截断分布适合我们的样本,我们分析人口分布均值等于65,标准偏差等于3.5.
删失数据
现在我们看一下删失数据的案例,看看他们和截断数据之间的区别。
案例:家庭表面尼古丁的含量情况
Matt et al.在2004年进行了一项研究,对烟草烟雾污染吸烟者家庭的整个表面进行了评估。非常有趣的一项测量是家具表面的尼古丁含量情况。每个家庭中的擦拭样本来自每件家具。然而,尼古丁污染低于一定限度的,测量仪检测不到。
数据被删失了,而不是被截断了。当尼古丁污染低于检测极限值时,样本中仍然包含了尼古丁的检测值,这个检测值就等于最低极限值。被这项研究中的这个问题启发,我随意创建了一个人工数据集。尼古丁污染水平的日志被假定为正常。在这里,lognlevel包含尼古丁含量。用于模拟日志尼古丁含量的参数,删失数据是μ=ln(5),σ=2.5,左删失数据为0.1。我们开始绘制直方图。
直方图左侧有一个尖峰,因为在检测极限以下的值被记录为等于极限值。计算样本的原始均值和标准偏差,将不会为潜在的未经审查的高斯分布提供适当的估计。
均值和标准偏差分别估计为1.68和2.4,而实际参数为ln(5) =1.61 和2.5。
使用Tobit账户审核
我们估计均值和标准偏差分布,并使用ll选项的tobit来考虑左删失值(如果审核极限值随观测值而变化,那么可以用intreg来代替)。
潜在的未经审核的分布估计的均值为1.62,标准差2.49. 我们把未经审核的分布叠加到直方图中:
潜在的未经审核的分布匹配直方图的一部分,左边尾部补偿审查点的尖峰。
总结
在抽样数据中,删失和截断是不同的两种现象。截断高斯抽样中潜在的人口参数可以用truncreg来估计。删失高斯抽样中潜在的人口参数要用intreg或tobit来估计。
结语
我们已经讨论了删失和截断的概念,也举例说明了这两个概念的意思。与本次讨论有关的要点如下:
本次讨论是基于高斯模型之上的,但是主要的概念可以扩展到任意的分布中。以上的例子在没有协变量的情况下拟合回归模型,因此,我们可以更好地可视化删失和截断分布的形状。然而,这些概念很容易扩展到协变量的回归框架中,并且特定观测值的期望值是协变量函数。
我们已经讨论过使用truncreg和tobit来处理删失和截断数据。但是这些命令也可以应用到非删失和非截断数据中,只要这些数据是特定分布中的人口抽样。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29