京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一般在做数据统计的时候会用到行转列,假如要统计学生的成绩,数据库里查询出来的会是这样的,但这并不能达到想要的效果,所以要在查询的时候做一下处理,下面话不多说了,来一起看看详细的介绍。
CREATE TABLE TestTable(
[Id] [int] IDENTITY(1,1) NOT NULL,
[UserName] [nvarchar](50) NULL,
[Subject] [nvarchar](50) NULL,
[Source] [numeric](18, 0) NULL
) ON [PRIMARY]
go
INSERT INTO TestTable ([UserName],[Subject],[Source])
SELECT N'张三',N'语文',60 UNION ALL
SELECT N'李四',N'数学',70 UNION ALL
SELECT N'王五',N'英语',80 UNION ALL
SELECT N'王五',N'数学',75 UNION ALL
SELECT N'王五',N'语文',57 UNION ALL
SELECT N'李四',N'语文',80 UNION ALL
SELECT N'张三',N'英语',100
GO
这里我用了三种方法来实现行转列第一种:静态行转列
select UserName 姓名,
sum(case Subject when '语文' then Source else 0 end) 语文,sum(case Subject when '数学' then Source else 0 end) 数学,
sum(case Subject when '英语' then Source else 0 end) 英语 from TestTable group by UserName
用povit行转列
select * from
(select UserName,Subject,Source from TestTable) testpivot(sum(Source) for Subject in(语文,数学,英语)
) pvt
用存储过程行转列
alter proc pro_test
@userImages varchar(200),
@Subject varchar(20),
@Subject1 varchar(200),
@TableName varchar(50)
as
declare @sql varchar(max)='select * from (select '+@userImages+' from'+@TableName+') tab
pivot
(
sum('+@Subject+') for Subject('+@Subject1+')
) pvt'
exec (@sql)
go
exec pro_test 'UserName,Subject,Source',
'TestTable',
'Subject',
'语文,数学,英语'
它们的效果都是这样的
以上三种方式实现行转列,我们可以根据自己的需求采用不同的方法
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13