京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天我们要来讨论的一个分类算法-逻辑回归(你有没有搞错,这不还是回归吗,虽然名字带上了回归其实它是一个非常实用的分类算法)。,适合对数学很头疼的同学们,小板凳走起!
先来吹一吹逻辑回归的应用,基本上所有的机器学习分类问题都可以使用逻辑回归来求解,当前拿到一份数据想做一个分类任务的时候第一手准备一定要拿逻辑回归来尝试(虽然有很多复杂的模型比如神经网络,支持向量机的名气更大,但是逻辑回归却更接地气,用的最多的还是它)!在机器学习中无论是算法的推导还是实际的应用一直有这样的一种思想,如果一个问题能用简单的算法去解决那么绝对没必要去套用复杂的模型。
在逻辑回归中最核心的概念就是Sigmoid函数了,首先我们先来观察一下它的自变量取值范围以及值域,自变量可以是任何实数(这没啥特别的!)但是我们观察值域的范围是[0,1]也就是任意的一个输入都会映射到[0,1]的区间上,我们来想一想这个区间有什么特别的含义吗?在我们做分类任务的时候一般我都都会认为一个数据来了它要么是0要么是1(只考虑二分类问题),我们其实可以更细致一点得出来它是0或者1的可能性有多大,由此我们就得出了一个输入属于某一个类别的概率值,这个[0,1]不就恰好是这个概率吗!
在这里我们的预测函数还是跟线性回归没有多大差别,只不过我们将结果又输入到Sigmoid函数中,这样得到了数据属于类别的概率值。在推导过程中,我们假定分类是两个类别的(逻辑回归是经典的而分类器)。设定y(标签)要么取0要么取1,这样就可以把两个类别进行整合,得到一个更直观的表达。
对于逻辑回归的求解,已然沿用我们上次跟大家讨论的梯度下降算法。给出似然函数,转换对数似然(跟线性回归一致),但是我们现在的优化目标却跟之前不太一样了,线性回归的时候我们要求解的是最小值(最小二乘法),但是现在我们想得到的却是使得该事件发生得最大值,为了沿用梯度下降来求解,可以做一个简单的转换添加一个负号以及一个常数很简单的两步就可以把原始问题依然转换成梯度下降可以求解的问题。
此处求导过程看起来有些长,但也都是非常非常基本的运算了,感兴趣拿起一支笔来实际算算吧!
最终就是参数更新了,迭代更新是机器学习的常规套路了。但是我们来简单想一想另外的一个问题,现在我们说的逻辑回归是一个二分类算法,那如果我的实际问题是一个多分类该怎么办呢?这个时候就需要Softmax啦,引入了归一化机制,来将得分值映射成概率值。
最后一句话总结一下吧,任何时候(没错就是这么狠)当我们一个实际任务来了,第一个算法就是逻辑回归啦,可以把它当成我们的基础模型,然后不断改进对比!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28